Skip to main content

Surface Plasmon, Surface Wave, and Enhanced Evanescent Wave Microscopy

  • Reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering

Abstract

This chapter gives an overview of the formation of evanescent fields excited by an objective lens. We discuss some of the different phenomena that emerge at the interface between a high index couplant and relatively low index sample. We show how surface plasmons are excited in the presence of a thin gold film. We discuss the application of surface waves microscopy with excitation of microscopic objectives and conclude that significant applications reside in the area of localized measurement of refractive index. A key challenge in surface microscopy is to maintain the high spatial resolution in the presence of waves that propagate relatively long distances along the sample surface, methods to achieve this high resolution are discussed in some detail. For cellular imaging while surface plasmons can give good images, evanescent waves generated by excitation from light incident above the critical angle can produce very high quality images of the sample surface, without needing to address the problems introduced by lateral propagation of the waves. Finally, we discuss potential new directions for imaging and localized sensing using these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod D (2007) Total internal reflection fluorescence microscopy. In: Optical imaging and microscopy. Springer, Berlin/Heidelberg, pp 195–236

    Google Scholar 

  2. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  Google Scholar 

  4. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54(1–2):3–15

    Article  Google Scholar 

  5. Somekh M (2007) Surface plasmon and surface wave microscopy, Ch. 14. In: Optical imaging and microscopy. Springer series in optical sciences, vol 87. Springer, Berlin/Heidelberg/New York, pp 347–399

    Google Scholar 

  6. Kabashin AV, Patskovsky S, Grigorenko AN (2009) Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express 17(23):21191–21204

    Article  Google Scholar 

  7. Huang YH, Ho HP, Wu SY, Kong SK (2012) Detecting phase shifts in surface plasmon resonance: a review. Adv Opt Technol 2012:471952

    Google Scholar 

  8. Goh JYL, Somekh MG, See CW, Pitter MC, Vere KA, O’Shea P (2005) Two-photon fluorescence surface wave microscopy. J Microsc Oxford 220:168–175

    Article  MathSciNet  Google Scholar 

  9. Oheim M, Michael DJ, Geisbauer M, Madsen D, Chow RH (2006) Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Adv Drug Deliv Rev 58(7):788–808

    Article  Google Scholar 

  10. Yeatman E, Ash EA (1987) Surface-plasmon microscopy. Electron Lett 23(20):1091–1092

    Article  Google Scholar 

  11. Rothenhausler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332(6165):615–617

    Article  Google Scholar 

  12. Berger CEH, Kooyman RPH, Greve J (1994) Resolution in surface-plasmon microscopy. Rev Sci Instrum 65(9):2829–2836

    Article  Google Scholar 

  13. Zhang J, Pitter MC, Liu S, See C, Somekh MG (2006) Surface-plasmon microscopy with a two-piece solid immersion lens: bright and dark fields. Appl Optics 45(31):7977–7986

    Article  Google Scholar 

  14. Giebel KF, Bechinger C, Herminghaus S, Riedel M, Leiderer P, Weiland U et al (1999) Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophys J 76(1):509–516

    Article  Google Scholar 

  15. Moh KJ, Yuan XC, Bu J, Zhu SW, Gao BZ (2008) Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. Opt Express 16(25):20734–20741

    Article  Google Scholar 

  16. Berguiga L, Zhang S, Argoul F, Elezgaray J (2007) High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions. Opt Lett 32(5):509–511

    Article  Google Scholar 

  17. ArcOptix. Radial polarizer plate. http://www.arcoptix.com/radial_polarization_converter.htm [cited 2014 1st Feb 2014]

  18. Kano H, Mizuguchi S, Kawata S (1998) Excitation of surface-plasmon polaritons by a focused laser beam. J Opt Soc Am B 15(4):1381–1386

    Article  Google Scholar 

  19. Fanton JT, Opsal J, Willenborg DL, Kelso SM, Rosencwaig A (1993) Multiparameter measurements of thin-films using beam-profile reflectometry. J Appl Phys 73(11):7035–7040

    Article  Google Scholar 

  20. See CW, Somekh MG, Holmes RD (1996) Scanning optical microellipsometer for pure surface profiling. Appl Optics 35(34):6663–6668

    Article  Google Scholar 

  21. Shatalin SV, JuŠKaitis R, Tan JB, Wilson T (1995) Reflection conoscopy and micro-ellipsometry of isotropic thin film structures. J Microsc 179(3):241–252

    Article  Google Scholar 

  22. Kano H, Knoll W (1998) Locally excited surface-plasmon-polaritons for thickness measurement of LBK films. Opt Commun 153(4–6):235–239

    Article  Google Scholar 

  23. Kano H, Knoll W (2000) A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe. Elsevier, Amsterdam. 11-5 p

    Google Scholar 

  24. Watanabe K, Miyazaki R, Terakado G, Okazaki T, Morigaki K, Kano H (2012) Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers. Biomed Opt Express 3(9):2012–2020

    Article  Google Scholar 

  25. Tanaka T, Yamamoto S (2003) Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors. Appl Optics 42(19):4002–4007

    Article  Google Scholar 

  26. Zhang CL, Wang R, Wang YJ, Zhu SW, Min CJ, Yuan XC (2014) Phase-stepping technique for highly sensitive microscopic surface plasmon resonance biosensor. Appl Optics 53(5):836–840

    Article  Google Scholar 

  27. Ho HP, Lam WW (2003) Application of differential phase measurement technique to surface plasmon resonance sensors. Sens Actuators B 96(3):554–559

    Article  Google Scholar 

  28. Ho HP, Law WC, Wu SY, Lin C, Kong SK (2005) Real-time optical biosensor based on differential phase measurement of surface plasmon resonance. Biosens Bioelectron 20(10):2177–2180

    Article  Google Scholar 

  29. Ho HP, Law WC, Wu SY, Liu XH, Wong SP, Lin C et al (2006) Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sens Actuators B 114(1):80–84

    Article  Google Scholar 

  30. Ho HP, Yuan W, Wong CL, Wu SY, Suen YK, Kong SK et al (2007) Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor. Opt Commun 275(2):491–496

    Article  Google Scholar 

  31. Wong CL, Ho HP, Suen YK, Kong SK, Chen QL, Yuan W et al (2008) Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosens Bioelectron 24(4):606–612

    Article  Google Scholar 

  32. Stabler G, Somekh MG, See CW (2004) High-resolution wide-field surface plasmon microscopy. J Microsc Oxford 214:328–333

    Article  MathSciNet  Google Scholar 

  33. Jamil MMA, Denyer MCT, Youseffi M, Britland ST, Liu S, See CW et al (2008) Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. J Struct Biol 164(1):75–80

    Article  Google Scholar 

  34. Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79(7):2979–2983

    Article  Google Scholar 

  35. Tan H-M (2011) High resolution quantitative angle-scanning widefield surface plasmon microscopy. In: Tan HM, Pechprasarn S, Zhang J, Pitter MC and Somekh MG (eds), Scientific Reports 6 article 20195

    Google Scholar 

  36. He RY, Lin CY, Su YD, Chiu KC, Chang NS, Wu HL et al (2010) Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy. Opt Express 18(4):3649–3659

    Article  Google Scholar 

  37. Chen W, Long KD, Lu M, Chaudhery V, Yu H, Choi JS et al (2013) Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst 138(20):5886–5894

    Article  Google Scholar 

  38. Somekh MG, See CW, Goh J (2000) Wide field amplitude and phase confocal microscope with speckle illumination. Opt Commun 174(1–4):75–80

    Article  Google Scholar 

  39. Somekh MG, Liu SG, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Optics 39(34):6279–6287

    Article  Google Scholar 

  40. Somekh MG, Liu SG, Velinov TS, See CW (2000) Optical V(z) for high-resolution 2 pi surface plasmon microscopy. Opt Lett 25(11):823–825

    Article  Google Scholar 

  41. Pechprasarn S, Somekh MG (2012) Surface plasmon microscopy: resolution, sensitivity and crosstalk. J Microsc 246(3):287–297

    Article  Google Scholar 

  42. Argoul F, Monier K, Roland T, Elezgaray J, Berguiga L (2010) High resolution surface plasmon microscopy for cell imaging. In: Popp J, Tuchin VV, Matthews DL (eds) Biophotonics: photonic solutions for better health care II. SPIR, Brussels

    Google Scholar 

  43. Berguiga L, Roland T, Monier K, Elezgaray J, Argoul F (2011) Amplitude and phase images of cellular structures with a scanning surface plasmon microscope. Opt Express 19(7):6571–6586

    Article  Google Scholar 

  44. Zhang B, Pechprasarn S, Zhang J, Somekh MG (2012) Confocal surface plasmon microscopy with pupil function engineering. Opt Express 20(7):7388–7397

    Article  Google Scholar 

  45. Zhang B, Pechprasarn S, Somekh MG (2013) Quantitative plasmonic measurements using embedded phase stepping confocal interferometry. Opt Express 21(9):11523–11535

    Article  Google Scholar 

  46. Pechprasarn S, Somekh MG (2014) Detection limits of confocal surface plasmon microscopy. Biomed Opt Express 5(6):1744–1756

    Article  Google Scholar 

  47. Pechprasarn S, Zhang B, Albutt D, Zhang J, Somekh M (2014) Ultrastable embedded surface plasmon confocal interferometry. Light Sci Appl 3:e187

    Article  Google Scholar 

  48. Berguiga L, Roland T, Fahys A, Elezgaray J, Argoul F (2010) High resolution surface plasmon imaging of nanoparticles. In: Andrews DL, Nunzi JM, Ostendorf A (eds) Nanophotonics III. SPIR Conference Volume 7712, Brussels

    Google Scholar 

  49. Abdul Jamil MM, Youseffi M, Britland ST, Liu S, See CW, Somekh MG et al (2006) Widefield surface plasmon resonance microscope: a novel biosensor study of cell attachment to micropatterned substrates. In: Ibrahim F, Abu Osman NA, Usman J, Kadri NA (eds) 3rd Kuala Lumpur international conference on biomedical engineering 2006, Kuala Lumpur, pp 334–337

    Google Scholar 

  50. Elezgaray J, Roland T, Berguiga L, Argoul F (2010) Modeling of the scanning surface plasmon microscope. J Opt Soc Am A Opt Image Sci Vis 27(3):450–457

    Article  Google Scholar 

  51. Roland T, Berguiga L, Elezgaray J, Argoul F (2010) Scanning surface plasmon imaging of nanoparticles. Phys Rev B 81(23):235419

    Google Scholar 

  52. Byrne GD, Vllasaliu D, Falcone FH, Somekh MG, Stolnik S (2015) Live imaging of cellular internalization of single colloidal particle by combined label-free and fluorescence total internal reflection microscopy. Mol Pharm 12:3862–3870

    Article  Google Scholar 

  53. Yeatman EM (1996) Resolution and sensitivity in surface plasmon microscopy and sensing. Biosens Bioelectron 11(6–7):635–649

    Article  Google Scholar 

  54. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969

    Article  Google Scholar 

  55. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721):534–537

    Article  Google Scholar 

  56. Lu D, Liu Z (2012) Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3:1205. doi:10.1038/ncomms.2176

    Google Scholar 

  57. Ma C, Van Keuren E (2013) Toward conventional-optical-lens-like superlenses. Nano Bull 2(1):130105

    Google Scholar 

  58. Smolyaninov II, Elliott J, Zayats AV, Davis CC (2005) Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys Rev Lett 94(5):057401

    Google Scholar 

  59. Smolyaninov II, Davis CC, Elliott J, Zayats AV (2005) Resolution enhancement of a surface immersion microscope near the plasmon resonance. Opt Lett 30(4):382–384

    Article  Google Scholar 

  60. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal-films. Phys Rev B 33(8):5186–5201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Somekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Somekh, M.G., Pechprasarn, S. (2017). Surface Plasmon, Surface Wave, and Enhanced Evanescent Wave Microscopy. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_20

Download citation

Publish with us

Policies and ethics