Skip to main content

Experimentation in Cognitive Neuroscience and Cognitive Neurobiology

  • Reference work entry
  • First Online:
Handbook of Neuroethics

Abstract

Neuroscience is a laboratory-based science that spans multiple levels of analysis from molecular genetics to behavior. At every level of analysis, experiments are designed in order to answer empirical questions about phenomena of interest. Understanding the nature and structure of experimentation in neuroscience is fundamental for assessing the quality of the evidence produced by such experiments and the kinds of claims that are warranted by the data. This chapter provides a general conceptual framework for thinking about evidence and experimentation in neuroscience with a particular focus on two research areas: cognitive neuroscience and cognitive neurobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also relevant to note, that some investigators have sought to increase the ecological validity of fMRI experiments with innovative methods that allow for 3-D (as opposed to 2-D) objects to be used within the scanner (See Snow et al. 2011).

References

  • Ankeny, R. (2001). Model organisms as models: Understanding the ‘lingua franca’ of the human genome project. Philosophy of Science, 68, S251–S261.

    Article  Google Scholar 

  • Bechtel, W., & Stufflebeam, R. S. (2001). Epistemic issues in procuring evidence about the brain: The importance of research instruments and techniques. In W. Bechtel, P. Mandik, J. Mundale, & R. S. Stufflebeam (Eds.), Philosophy and the neurosciences: A reader (pp. 55–81). Oxford: Blackwell.

    Google Scholar 

  • Bogen, J. (2001). Functional imaging evidence: Some epistemic hotspots. In P. K. Machamer, P. McLaughlin, & R. Grush (Eds.), Theory and method in the neurosciences. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Bogen, J. (2002). Epistemological custard pies from functional brain imaging. Philosophy of Science, 69, S59–S71.

    Article  Google Scholar 

  • Bogen, J., & Woodward, J. (1988). Saving the phenomena. The Philosophical Review, 97, 303–352.

    Article  Google Scholar 

  • Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge: Harvard University Press.

    Google Scholar 

  • Burian, R. M. (1993). How the choice of experimental organism matters: Epistemological reflections on an aspect of biological practice. Journal of the History of Biology, 26, 351–367.

    Article  Google Scholar 

  • Campbell, D. D., & Stanley, J. (1963). Experimental and quasi-experimental designs for research. Chicago: Rand-McNally.

    Google Scholar 

  • Cartwright, N. (1999). The dappled world: A study of the boundaries of science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cook, T. D., & Campbell, D. D. (1979). Quasi-experimentation: Design and analysis issues for field settings. Chicago: Rand-McNally.

    Google Scholar 

  • Cronbach, L., & Meehl, P. (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281–302.

    Article  Google Scholar 

  • Culham, J. (2013). Functional imaging for newbies. (http://culhamlab.ssc.uwo.ca/fmri4newbies/)

  • Delehanty, M. (2007). Perceiving causation via videomicroscopy. Philosophy of Science, 74(5), 996–1006.

    Article  Google Scholar 

  • Delehanty, M. (2010). Why images? Medicine Studies, 2(3), 161–173.

    Article  Google Scholar 

  • Franklin, A. (1986). The neglect of experiment. New York: Cambridge University Press.

    Book  Google Scholar 

  • Franklin, A. (1999). Can that be right? Essays on experiment, evidence, and science. Boston: Kluwer.

    Book  Google Scholar 

  • Guala, F. (2003). Experimental localism and external validity. Philosophy of Science Supplement, 70, 1195–1205.

    Article  Google Scholar 

  • Guala, F. (2005). The methodology of experimental economics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hardcastle, V. G., & Stewart, C. M. (2002). What do brain data really show? Philosophy of Science, 69, S72–S82.

    Article  Google Scholar 

  • Klein, C. (2010a). Philosophical issues in neuroimaging. Philosophy Compass, 5(2), 186–198.

    Article  Google Scholar 

  • Klein, C. (2010b). Images are not the evidence in neuroimaging. British Journal for the Philosophy of Science, 61(2), 265–278.

    Article  Google Scholar 

  • Landreth, A., & Richardson, R. C. (2004). Localization and the new phrenology: A review essay on William Uttal’s The New Phrenology. Philosophical Psychology, 17, 108–123.

    Article  Google Scholar 

  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.

    Article  Google Scholar 

  • Mayo, D. (1991). Novel evidence and severe tests. Philosophy of Science, 58, 523–552.

    Article  Google Scholar 

  • Mayo, D. (1996). Error and the growth of experimental knowledge. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Mayo, D. (2000). Experimental practice and an error statistical account of evidence. Philosophy of Science, 67(3), S193–S207.

    Article  Google Scholar 

  • Mole, C., Plate, J., Waller, R., Dobbs, M., & Nardone, M. (2007). Faces and brains: The limitations of brain scanning in cognitive science. Philosophical Psychology, 20(2), 197–207.

    Article  Google Scholar 

  • Roskies, A. (2007). Are neuroimages like photographs of the brain? Philosophy of Science, 74(5), 860–872.

    Article  Google Scholar 

  • Roskies, A. (2010). Neuroimaging and inferential distance: The perils of pictures. In M. Bunzl, & S. Hansen (Eds.), Foundations of functional neuroimaging. Cambridge: MIT Press.

    Google Scholar 

  • Schaffner, K. (2001). Extrapolation from animal models: Social life, sex, and super models. In P. K. Machamer, P. McLaughlin, & R. Grush (Eds.), Theory and method in the neurosciences. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Schmuckler, M. (2001). What is ecological validity? A dimensional analysis. Infancy, 2(4), 419–436.

    Article  Google Scholar 

  • Shadish, W., Cook, T., & Campbell, D. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston: Houghton Mifflin Company.

    Google Scholar 

  • Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Science Reports 1, Article 130.

    Google Scholar 

  • Steel, D. P. (2008). Across the boundaries: Extrapolation in biology and social science. Oxford: Oxford University Press.

    Google Scholar 

  • Sullivan, J. A. (2007). Reliability and validity of experiment in the neurobiology of learning and memory. Dissertation, University of Pittsburgh.

    Google Scholar 

  • Sullivan, J. (2009). The multiplicity of experimental protocols: A challenge to reductionist and non-reductionist models of the unity of neuroscience. Synthese, 167, 511–539.

    Article  Google Scholar 

  • Sullivan, J. (2010). Reconsidering “spatial memory” and the Morris water maze. Synthese, 177, 261–283.

    Article  Google Scholar 

  • Sweatt, J. D. (2009). Mechanisms of memory. San Diego: Elsevier.

    Google Scholar 

  • Uttal, W. R. (2001). The new phrenology. Cambridge: MIT Press.

    Google Scholar 

  • Uttal, W. R. (2011). Mind and brain: A critical appraisal of cognitive neuroscience. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Uttal, W. R. (2013). Reliability in cognitive neuroscience: A meta-meta-analysis. Cambridge: MIT Press.

    Google Scholar 

  • Van Orden, G., & Paap, G. C. (1997). Functional neuroimages fail to discover pieces of mind in parts of the brain. Philosophy of Science, 64(S1), S85–S94.

    Article  Google Scholar 

  • Woodward, J. (1989). Data and phenomena. Synthese, 79, 393–472.

    Article  Google Scholar 

  • Woodward, J. (2000). Data, phenomena and reliability. Philosophy of Science, 67(3), S163–S179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Sullivan, J. (2015). Experimentation in Cognitive Neuroscience and Cognitive Neurobiology. In: Clausen, J., Levy, N. (eds) Handbook of Neuroethics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4707-4_108

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4707-4_108

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4706-7

  • Online ISBN: 978-94-007-4707-4

  • eBook Packages: Humanities, Social Sciences and Law

Publish with us

Policies and ethics