Advertisement

The Wetland Book pp 1711-1723 | Cite as

Wetlands of the Ganga-Brahmaputra Basin

  • Ritesh Kumar
  • Kalpana Ambastha
Reference work entry

Abstract

The international basin of Rivers Ganga and Brahmaputra is endowed with a diverse wetland regime, which ranges from high altitude oligotrophic lakes in the Himalayas, the marshes and swamps of the Terai region, and floodplain and riverine wetlands in the Gangetic and Brahmaputra alluvial plains to coastal wetlands in the deltaic tracts. Besides, being key biodiversity habitats, these wetlands play an important role in providing water, food, and climate security to the basin’s 630 million inhabitants. The basin countries, under the overarching principle of wise use, have evolved policy frameworks, regulatory regimes, and national programs for securing the health and ecological integrity of these wetlands. Yet, alteration of natural flow regimes, expansion and intensification of agriculture and settlements, pollution, unregulated tourism, and invasive species continue to stress these ecosystems. Integration of the full range of ecosystem services and biodiversity values of basin wetlands, taking into account the ecological continuum between high altitude, planes, and deltaic wetlands, within an integrated water resources management framework can secure the future of these ecosystems.

Keywords

High altitude wetlands Terai Gangetic plains Gangetic delta Transboundary 

References

  1. Abrol YP, Sangwan S, Dadhwal VK, Tiwari MK. Land use land cover in Indo-Gangetic Plains – history of changes, present concerns and future approaches. In: Abrol YP, Sangwan S, Tiwari MK, editors. Land use – historical perspectives: focus on Indo-Gangetic Plains. New Delhi: Allied Publishers Private Limited; 2002. p. 1–28.Google Scholar
  2. Brown S, Nicholls RJ. Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci Total Environ. 2015;527-528:362–74.CrossRefPubMedGoogle Scholar
  3. Chowdhury AU. Birds of Kaziranga National Park: a checklist. Guwahati: Gibbon Books and the Rhino Foundation; 2003.Google Scholar
  4. Chowdhury R, Ward N. Hydro-meteorological variability in the greater Ganges–Brahmaputra–Meghna basins. Int J Climatol. 2004;24(12):1495–508.CrossRefGoogle Scholar
  5. Eriksson M, Vaidya R, Jianchu X, Shrestha AB, Nepal S, Sandstrom K. The changing Himalayas: impact of climate change on water resources and livelihoods in the greater Himalayas. Kathmandu: International Center for Integrated Mountain Development (ICIMOD); 2009.Google Scholar
  6. FAO. Irrigation in Southern and Eastern Asia in figures: AQUASTAT survey – 2011. FAO Water Reports 37. Rome: Food and Agriculture Organization of the United Nations (FAO); 2012.Google Scholar
  7. Flint E. Historical reconstruction of changes in land use and land cover of vegetation in the Gangetic Plain 1880–1980: methodology and case studies. In: Abrol YP, Sangwan S, Tiwari MK, editors. Land use – historical perspectives: focus on Indo-Gangetic Plains. New Delhi: Allied Publishers Private Limited; 2002. p. 189–248.Google Scholar
  8. Gogoi R. Conserving Deepor Beel–Ramsar Site, Assam. Curr Sci. 2007;93(4):445–6.Google Scholar
  9. Gopal B, Chauhan M. Biodiversity and its conservation in the Sundarban Mangrove ecosystem. Aquat Sci. 2006;68:338–54.CrossRefGoogle Scholar
  10. Harris C, Bhandari BB, Hua O, Sharma E. Himalayan Wetlands Initiative – conservation and wise use of natural water storage in the HKH region. Sustainable Mountain Development. 2009;59. ICIMOD.Google Scholar
  11. Islam SN. Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh. Sustain Water Resour Manag. 2016. doi:10.1007/s40899-016-0047-6.CrossRefGoogle Scholar
  12. Islam MZ, Rahmani AR. Important bird areas in India: priority sites for conservation. Mumbai: Indian Bird Conservation Network/Bombay Natural History Society and BirdLife International; 2004.Google Scholar
  13. Islam MZ, Rahmani AR. Potential and existing Ramsar Sites in India. Indian Bird Conservation Network: Bombay Natural History Society, BirdLife International and Royal Society for the protection of birds. Oxford: Oxford University Press; 2008.Google Scholar
  14. Khan SM, Haq E, Hug S, Rahman AA, Rashid SMA, Ahmed H. Wetlands of Bangladesh. Dhaka: Holiday Printers; 1994. p. 1–88.Google Scholar
  15. Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol. 2004;296(1-4):1–22. doi:10.1016/j.jhydrol.2004.03.028.CrossRefGoogle Scholar
  16. Narayan G, Deka P, Oliver W. Porcula salvania. The IUCN Red List of Threatened Species. 2008.Google Scholar
  17. Panigrahy S, Patel JG, Parihar JS, editors. National wetland atlas: high altitude lakes of India. Ahmedabad: Space Applications Centre (SAC), ISRO, Government of India; 2012.Google Scholar
  18. Raha A, Das S, Banerjee K, Mitra A. Climate change impacts on Indian Sundarbans: a time series analysis (1924–2008). Biodivers Conserv. 2012;20(1):1289–307.CrossRefGoogle Scholar
  19. Ramsar. Information Sheet on Ramsar Wetlands (RIS): Tanguar Haor. Gland: Ramsar Convention Secretariat; 2000.Google Scholar
  20. Ramsar. Information Sheet on Ramsar Wetlands (RIS): East Calcutta Wetlands. Gland: Ramsar Convention Secretariat; 2002.Google Scholar
  21. SAC. National Wetland Atlas. Ahmedabad: Space Applications Centre (SAC), ISRO, Government of India; 2011.Google Scholar
  22. Sinha M. Farakka barrage and its impact on the hydrology and fishery of Hooghly estuary. Water Sci Technol Lib. 2004;49:103–24.CrossRefGoogle Scholar
  23. Sultana MS, Islam GMT, Islam Z. Pre and post-urban wetland area in Dhaka City, Bangladesh: a remote sensing and GIS analysis. J Water Resour Prot. 2009;1:414–21.CrossRefGoogle Scholar
  24. Sundar KSG. Are rice paddies suboptimal breeding habitat for Sarus Cranes in Uttar Pradesh, India? Condor. 2009;111(4):611–23.CrossRefGoogle Scholar
  25. Swar DB. The status of coldwater fish and fisheries in Nepal and prospects of their utilization for poverty reduction. In: Cold water fisheries in the trans Himalayan countries. Rome: FAO; 2002.Google Scholar
  26. Szabo S, Brondizio E, Renaud FG, Hetrick S, Nicholls RJ, Matthews Z, Tessler Z, Tejedor A, Sebesvari Z, Foufoula-Georgiou E, da Costa S, Dearing JA. Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges–Brahmaputra and Amazon delta regions. Sustain Sci. 2016;11:539–54.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Trisal CL, Kumar R. Integration of high altitude wetlands into river basin management in the Hindu Kush Himalayas: capacity building needs assessment for policy and technical support. New Delhi: Wetlands International South Asia; 2008.Google Scholar
  28. Trisal CL, Tabassum T, Kumar R. Water quality of the River Yamuna in the Delhi stretch: key determinants and management issues. Clean-Soil Air Water. 2008;36(3):306–14.CrossRefGoogle Scholar
  29. Vass KK, Das MK, Tyagi RK, Katiha PK, Samanta S, Shrivastava NP, Bhattacharjya BK, Suresh VR, Pathak V, Chandra G, Debnath D, Gopal B. Strategies for sustainable fisheries in the Indian part of the Ganga-Brahmaputra river basins. Int J Ecol Environ Sci. 2011;37(4):157–218.Google Scholar
  30. Wang Z, Wu J, Madden M, Mao D. China’s wetlands: conservation plans and policy impacts. Ambio. 2012;41(7):782–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wetlands International. Wetlands & water, sanitation and hygiene (WASH) – understanding the linkages. Wageningen: Wetlands International; 2010.Google Scholar
  32. World Bank. Building resilience for sustainable development of the Sundarbans. Strategy Report. Washington, DC: World Bank: 2014.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wetlands International South AsiaNew DelhiIndia

Personalised recommendations