Skip to main content

Seagrasses

  • Reference work entry
  • First Online:
The Wetland Book

Abstract

Seagrass meadows are a critical component of the coastal marine environment worldwide, providing some of the most economically and environmentally valuable ecosystem services of any marine habitat. These marine angiosperms form extensive meadows that store carbon, improve water quality, provide food and habitat, and act as biological indicators. These unique marine flowering plants are found mainly in clear, shallow estuaries and coastal waters where they propagate both sexually and vegetatively, with 72 species worldwide. They provide habitat for juvenile fish and shellfish and are eaten by sea turtles, dugong and manatee as well as waterfowl. Seagrasses grow both intertidally and subtidally in all the tropical and temperate ocean. Despite their importance, seagrass meadows are experiencing high rates of loss globally due to direct threats such as sedimentation, eutrophication, dredging and aquaculture, as well as diffuse threats such as water quality losses and climate change. All seagrass species have been evaluated for the IUCN Red List of Threatened and Endangered Species, with 14% at elevated risk of extinction. Strong science-based management and regulatory strategies are needed to maintain and increase seagrass habitats, as well as build their resilience to stressors in a globally changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Björk M, Short F, Mcleod E, Beer S. Managing seagrasses for resilience to climate change. Gland: IUCN; 2008. 56pp.

    Google Scholar 

  • Cabot S. Memories of the Cabot’s Quilt. Yankee, November 1986.

    Google Scholar 

  • Coles R, Short F, Fortes M, Kuo J. Twenty years of seagrass networking and advancing seagrass science: the international seagrass biology workshop series. Pac Conserv Biol. 2014;20:8–16.

    Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. Changes in the global value of ecosystem services. Glob Environ Chang. 2014;26:152–8.

    Article  Google Scholar 

  • Cullen-Unsworth LC, Nordlund LM, Paddock J, Baker S, McKenzie L, Unsworth RKF. Seagrass meadows globally as a coupled social-ecological system: implications for human wellbeing. Mar Pollut Bull. 2014;83:387–97.

    Article  CAS  PubMed  Google Scholar 

  • den Hartog C. The seagrasses of the world. Verh K Ned Akad Wetenschappen Afdeling Natuurkunde. 1970;59:1–275.

    Google Scholar 

  • Duarte CM, Chiscano CL. Seagrass biomass and production: a reassessment. Aquat Bot. 1999;65:159–74.

    Article  Google Scholar 

  • Gillanders BM. Seagrasses, fish and fisheries. In: Larkum AWD, Orth R, Duarte C, editors. Seagrasses: biology, ecology and conservation. Dordrecht: Springer; 2006. p. 503–36.

    Google Scholar 

  • Green EP, Short FT, editors. World atlas of seagrasses. Berkeley: University of California Press; 2003. 324 pp.

    Google Scholar 

  • Hemminga MA, Duarte CM. Seagrass ecology. Cambridge, UK: Cambridge University Press; 2000. 298 pp.

    Book  Google Scholar 

  • McGlathery KJ, Sundback K, Anderson IC. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser. 2007;348:1–18.

    Article  CAS  Google Scholar 

  • Milne LJ, Milne MJ. The eelgrass catastrophe. Sci Am. 1951;184:52–5.

    Google Scholar 

  • Novak AB, Short FT. Leaf reddening in seagrasses. Bot Mar. 2010;53:93–7.

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck Jr KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL. A global crisis for seagrass ecosystems. Bioscience. 2006;56:987–96.

    Article  Google Scholar 

  • Short FT, Wyllie-Echeverria S. Natural and human-induced disturbance of seagrasses. Environ Conserv. 1996;23:17–27.

    Article  Google Scholar 

  • Short FT, Dennison WC, Carruthers JTB, Waycott M. Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol. 2007;350:3–20.

    Article  Google Scholar 

  • Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Kenworthy WJ, La Nafie YA, Nasution IM, Orth RJ, Prathep A, Sanciangco JC, van Tussenbroek B, Vergara SG, Waycott M, Zieman JC. Extinction risk assessment of the world’s seagrass species. Biol Conserv. 2011;144:1961–71.

    Article  Google Scholar 

  • Short FT, Kosten S, Morgan P, Malone S, Moore G. Present and future impacts of climate change on submerged and emergent wetland plants: a review. In: Aquat. Bot. special issue: “40 years of Aquatic Botany”; 2016. http://dx.doi.org/10.1016/j.aquabot.2016.06.006.

  • Spalding M, Taylor M, Ravilious C, Short F, Green E. Global overview: the distribution and status of seagrasses. In: Green EP, Short FT, editors. World atlas of seagrasses. Berkeley: University of California Press; 2003. p. 5–26.

    Google Scholar 

  • Valentine JF, Duffy JE. The central role of grazing in seagrass ecology. In: Larkum AWD, Orth R, Duarte C, editors. Seagrasses: biology, ecology and conservation. Dordrecht: Springer; 2006. p. 463–501.

    Google Scholar 

  • Virnstein RW, Hall LM. Northern range extension of the seagrasses Halophila johnsonii and Halophila decipiens along the east coast of Florida, USA. Aquat Bot. 2009;90:89–92.

    Article  Google Scholar 

  • Waycott M, Procaccini G, Les DH, Reusch TBH. Seagrass evolution, ecology and conservation: a genetic perspective. In: Larkum AWD, Orth R, Duarte C, editors. Seagrasses: biology, ecology and conservation. Dordrecht: Springer; 2006. p. 25–50.

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck Jr KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci. 2009;106:12377–81.

    Article  PubMed  Google Scholar 

  • Willette DA, Chalifour J, Debrot AOD, Engel MS, Miller J, Oxenford HA, Short FT, Steiner SCC, Védie F. Continued expansion of the trans-Atlantic invasive marine angiosperm Halophila stipulacea in the Eastern Caribbean. Aquat Bot. 2014;112:98–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick T. Short .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Short, F.T., Short, C.A., Novak, A.B. (2018). Seagrasses. In: Finlayson, C., Milton, G., Prentice, R., Davidson, N. (eds) The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4001-3_262

Download citation

Publish with us

Policies and ethics