Freshwater Lakes and Reservoirs

Reference work entry

Abstract

Lakes, ponds, and lacustrine environments are characterized by standing water in depressions of the landscape left by glacier scouring or impoundments along river networks. Depending on their origin and climatic conditions, lakes can be ancient (e.g., African rift lakes) or very young (e.g., recent landslides). The age of most of today’s lakes are in the range of tens of thousands of years old as they were created during the glacier recession of the last ice age (e.g., lakes on or near the Canadian Shield). A handful of largest lakes contain a major proportion of the world’s lake water volume whereas small lakes are more numerous and account for most of lakes surface area. Over time, the natural evolution of lakes is to gradually fill from autochthonous and allochthonous material and sediments. Freshwater lakes, like other surface water ecosystems, offer a wide array of benefits for people, such as water provision, fisheries, flood attenuation, and recreational purposes, and play an important role in global biogeochemical cycles, including water, carbon, and nutrient balances. Overexploitation of freshwater resources threatens the capacity of these ecosystems to provide these benefits in the future.

Keywords

Lakes Reservoirs Volume Residence time Lentic ecosystem Biota Ecosystem services 

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA. Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54(6):2283.CrossRefGoogle Scholar
  2. Allan JD, McIntyre PB, Smith SD, Halpern BS, Boyer GL, Buchsbaum A, Burton GA, Campbell LM, Chadderton WL, Ciborowski JJ, Doran PJ. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc Natl Acad Sci. 2013;110(1):372–7.CrossRefGoogle Scholar
  3. Beeton AM. Large freshwater lakes: present state, trends, and future. Environ Conserv. 2002;29(1):21–38.CrossRefGoogle Scholar
  4. Bennett EM, Carpenter SR, Caraco NF. Human impact on erodable phosphorus and eutrophication: a global perspective increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. BioScience. 2001;51(3):227–34.CrossRefGoogle Scholar
  5. Berga L, Buil JM, Bofill E, De Cea C, Manueco G, Polimon J, Soriano A, Yague J, editors. Dams and reservoirs, societies and environment in the 21st century. Proceedings of the International Symposium on Dams in Societies of the 21st Century; 18 June 2006; Barcelona. London: Taylor and Francis Group; 2006.Google Scholar
  6. Capon SJ, Lynch JJ, Bond N, Bruce C, Chessman BC, Jenny D, Davison N, Finlayson CM, Gell PA, Hohnberg D, Humphrey C, Kingsford RT, Nielsen D, Thomson JR, Ward K, MacNally R. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Sci Total Environ. 2015;534:122–30.CrossRefGoogle Scholar
  7. Carpenter SR, Stanley EH, Vander Zanden MJ. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour. 2011;36:75–99.CrossRefGoogle Scholar
  8. Costanza R, de Groot R, Sutton P, van der Ploe S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. Changes in the global value of ecosystem services. Glob Environ Chang. 2014;26:152–8.CrossRefGoogle Scholar
  9. Downing JA. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica. 2010;29:9–24.Google Scholar
  10. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr. 2006;51:2388–97.CrossRefGoogle Scholar
  11. Ficke AD, Myrick CA, Hansen LJ. Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish. 2007;17(4):581–613.CrossRefGoogle Scholar
  12. Finlayson CM, D’Cruz R. Inland water systems. In: Hassan R, Scholes R, Ash N, editors. Ecosystems and human well-being: current state and trends: findings of the condition and trends working group. Washington, DC: Island Press; 2005. p. 551–83.Google Scholar
  13. Gao H, Bohn TJ, Podest E, McDonald KC, Lettenmaier DP. On the causes of the shrinking of Lake Chad. Environ Res Lett. 2011;6(3):034021.CrossRefGoogle Scholar
  14. Harris J. Poyang Lake, Yangtze River Basin, China. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC, editors. The wetland book II: distribution, description, and conservation. Dordrecht: Springer; 2018.Google Scholar
  15. Hutchinson G. A treatise on limnology: vol. I. Geography, physics and chemistry. New York: Wiley; 1957.Google Scholar
  16. Hutchinson GE. A treatise on limnology: vol III limnological botany. New York: Wiley; 1975.Google Scholar
  17. Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol. 2004;296:1–22.CrossRefGoogle Scholar
  18. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ. 2011;9:494–502.CrossRefGoogle Scholar
  19. Lewis Jr WM. Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters. 2011;1(1):1–28.CrossRefGoogle Scholar
  20. Liu J, Zhang Q, Xu C, Zhang Z. Characteristics of runoff variation of Poyang Lake watershed in the past 50 years. Trop Geogr. 2009;29(3):213–8.Google Scholar
  21. Lotfi A. Lake Uromiyeh and its satellite wetlands, Iran. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC, editors. The wetland book II: distribution, description, and conservation. Dordrecht: Springer; 2018a.Google Scholar
  22. Lotfi A. Lake Parishan, Iran. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC, editors. The wetland book II: distribution, description, and conservation. Dordrecht: Springer; 2018b.Google Scholar
  23. Magnuson JJ. Future of adapting to climate change and variability. In: McGinn NA, editor. Fisheries in a changing climate. Bethesda: American Fisheries Society; 2002. p. 283–7.Google Scholar
  24. Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card V, Kuusisto E, Granin NG. Historical trends in lake and river ice cover in the northern hemisphere. Science. 2000;289(5485):1743–6.CrossRefGoogle Scholar
  25. McDonald CP, Rover JA, Stets EG, Striegl RG. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol Oceanogr. 2012;57(2):597–606.CrossRefGoogle Scholar
  26. Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 2016;7. doi: 10.1038/ncomms13603.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Micklin P. The Aral Sea disaster. Annu Rev Earth Planet Sci. 2007;35:47–72.CrossRefGoogle Scholar
  28. Moss B. Ecology of freshwaters: a view for the twenty-first century. Oxford: Wiley-Blackwell; 2010.Google Scholar
  29. Moss B, Hering D, Green AJ, Aidoud A, Becares E, Beklioglu M, Bennion H, Boix D, Brucet S, Carvalho L, Clement B, et al. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshwat Rev. 2009;2(2):103–30.CrossRefGoogle Scholar
  30. Mueller DR, Van Hove P, Antoniades D, Jeffries MO, Vincent WF. High Arctic lakes as sentinel ecosystems: cascading regime shifts in climate, ice cover, and mixing. Limnol Oceanogr. 2009;54(6 Part 2):2371–85.CrossRefGoogle Scholar
  31. O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, Weyhenmeyer GA, et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 2015;42(24):10,773–81.Google Scholar
  32. Ojwang WO, Obiero KO, Donde OO, Gownaris N, Pikitch EK, Omondi R, Agembe S, Malala J, Avery ST. Lake Turkana, the world’s largest permanent desert lake. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC, editors. The wetland book II: distribution, description, and conservation. Dordrecht: Springer; 2018.Google Scholar
  33. Paerl HW, Paul VJ. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 2012;46(5):1349–63.CrossRefGoogle Scholar
  34. Poff NL, Brinson MM, Day JW. Aquatic ecosystems and global climate change. Arlington: Pew Center on Global Climate Change; 2002. p. 44.Google Scholar
  35. Rahel FJ. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol. 2007;52(4):696–710.CrossRefGoogle Scholar
  36. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P. Global carbon dioxide emissions from inland waters. Nature. 2013;503(7476):355–9.CrossRefGoogle Scholar
  37. Rosenberg DM, Berkes F, Bodaly RA, Hecky RE, Kelly CA, Rudd JW. Large-scale impacts of hydroelectric development. Environ Rev. 1997;5(1):27–54.CrossRefGoogle Scholar
  38. Ryanzhin SV, Subetto DA, Kochkov NV, Akhmetova NS, Veinmeister NV. Polar lakes of the world: current data and status of investigations. Water Resour. 2010;37(4):427–46.CrossRefGoogle Scholar
  39. Scheffer M, Carpenter SR. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol. 2003;18(12):648–56.CrossRefGoogle Scholar
  40. Seekell DA, Pace ML. Does the Pareto distribution adequately describe the size‐distribution of lakes? Limnol Oceanogr. 2011;56(1):350–6.CrossRefGoogle Scholar
  41. Sobek S, Nisell J, Fölster J. Predicting the volume and depth of lakes from map-derived parameters. Inland Waters. 2011;1(3):177–84.CrossRefGoogle Scholar
  42. Strayer DL. Twenty years of zebra mussels: lessons from the mollusk that made headlines. Front Ecol Environ. 2008;7(3):135–41.CrossRefGoogle Scholar
  43. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. A global inventory of lakes based on high‐resolution satellite imagery. Geophys Res Lett. 2014;41(18):6396–402.CrossRefGoogle Scholar
  44. Vörösmarty CJ, Leveque C, Revenga C. Fresh water. In: Hassan R, Scholes R, Ash N, editors. Ecosystems and human well-being: current state and trends: findings of the condition and trends working group. Washington, DC: Island Press; 2005. p. 167–207.Google Scholar
  45. Wetzel RG. Limnology: lake and river ecosystems. Gulf Professional Publishing; 2001.CrossRefGoogle Scholar
  46. Wetzel RG, Likens GE. Limnological analyses. New York: Springer; 1991.CrossRefGoogle Scholar
  47. Williamson CE, Saros JE, Vincent WF, Smold JP. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr. 2009;54(6 Part 2):2273–82.CrossRefGoogle Scholar
  48. Winslow LA, Read JS, Hanson PC, Stanley EH. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes. Inland Waters. 2015;5(1):7–14.CrossRefGoogle Scholar
  49. Witte F, Goldschmidt T, Wanink J, van Oijen M, Goudswaard K, Witte-Maas E, Bouton N. The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fishes. 1992;34(1):1–28.CrossRefGoogle Scholar
  50. Woodward G, Perkins DM, Brown LE. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci. 2010;365(1549):2093–106.CrossRefGoogle Scholar
  51. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. A global boom in hydropower dam construction. Aquat Sci. 2015;77(1):161–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for LimnologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA
  3. 3.Department of GeographyMcGill UniversityMontrealCanada
  4. 4.Institute for Land, Water and SocietyCharles Sturt UniversityAlburyAustralia
  5. 5.UNESCO-IHEThe Institute for Water EducationDelftThe Netherlands

Personalised recommendations