Skip to main content

Earthquakes and Volcanoes: Risk from Geophysical Hazards

  • Reference work entry
Handbook of Risk Theory

Abstract

The aims of this chapter are to present a brief history of ideas in the interdisciplinary study of volcanic and seismic risk, to discuss the current state of the subject, and to suggest pathways for further research. This is a very extensive topic – while much of the scientific literature tends to focus on hazard assessment (and, increasingly, risk assessment), the social sciences have tended to focus on vulnerability reduction and risk communication. There have been very few holistic epistemological studies of the broader context of risk. Yet the philosophical aspects of uncertainty are increasingly important for scientists in particular as they seek to assess and understand these risks, not least because of heated debates within both fields concerning the relative values of deterministic and probabilistic methods and the ways in which they deal with uncertainty. Social scientific and philosophical methods therefore have significant potential to inform this discussion, and are also increasingly important in assessing vulnerability and popular understanding of risks in hazardous areas. There has been a large volume of work done in recent years to examine seismic and volcanic risk perception and communication, much of which suggests that these risks are not high on the social agenda until an event happens. This calls for new approaches to population management, preparedness, and proactive roles for scientists and social scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aspinall WP et al (2002) The Montserrat volcano observatory: its evolution, organization, role and activities. Geol Soc Lond Mem 21(1):71–91

    Article  Google Scholar 

  • Aspinall WP et al (2003) Evidence-based volcanology: application to eruption crises. J Volcanol Geotherm Res 128:273–285

    Article  Google Scholar 

  • Aspinall WP (2006) Structured elicitation of expert judgement for probabilistic hazard and risk assessment in volcanic eruptions. In: Coles S, Mader HM, Connor C, Connor L (eds) Statistics in volcanology, vol 1, Special publications of Iavcei. Geological Society of London, London, pp 15–30

    Google Scholar 

  • Aspinall WP (2010) A route to more tractable expert advice. Nature 463:294–295

    Article  Google Scholar 

  • Barberi F et al (2008) Volcanic risk perception in the Vesuvius population. J Volcanol Geotherm Res 172(3–4):244

    Article  Google Scholar 

  • Barclay J et al (2008) Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geol Soc Lond Spec Publ 305(1):163–177

    Article  Google Scholar 

  • Baxter PJ et al (2008) Emergency planning and mitigation at Vesuvius: a new evidence-based approach. J Volcanol Geotherm Res 178(3):454

    Article  Google Scholar 

  • Beck U (1992) Risk society: towards a new modernity. Sage, New Delhi (German original, 1986)

    Google Scholar 

  • Beck U (2009) World at risk. Polity Press, Cambridge (German original 2007)

    Google Scholar 

  • Beck U (1999) World risk society. Polity Press, Cambridge

    Google Scholar 

  • Bird DK et al (2009) Public perception of jokulhlaup hazard and risk in Iceland: implications for community education. Int J Manag Decis Mak 10(3–4):164–175

    Article  Google Scholar 

  • Bird DK et al (2010) Volcanic risk and tourism in southern Iceland: implications for hazard, risk and emergency response education and training. J Volcanol Geotherm Res 189(1–2):33

    Article  Google Scholar 

  • Bommer JJ, Abrahamson NA (2006) Why do modern probabilistic seismic hazard analyses often lead to increased hazard estimates? Bull Seismol Soc Am 96(6):1976–1977

    Article  Google Scholar 

  • Castanos H, Lomnitz C (2002) PSHA: Is it science? Eng Geol 66(3–4):315–317

    Article  Google Scholar 

  • Chester DK (2001) The 1755 Lisbon earthquake. Prog Phys Geogr 25(3):363–383

    Google Scholar 

  • Chester DK (2005) Theology and disaster studies: the need for dialogue. J Volcanol Geotherm Res 146(4):319–328

    Article  Google Scholar 

  • Chester DK et al (2008) The importance of religion in shaping volcanic risk perception in Italy, with special reference to Vesuvius and Etna. J Volcanol Geotherm Res 172(3–4):216

    Article  Google Scholar 

  • Cooke RM (1991) Experts in uncertainty: opinion and subjective probability in science. Oxford University Press, Oxford

    Google Scholar 

  • Corvalyn M (2008) Is probability the only coherent approach to uncertainty? Risk Anal 28(3):645–652

    Article  Google Scholar 

  • Cox RT et al (2001) Neotectonics of the southeastern reelfoot rift zone margin, central United States, and implications for regional strain accommodation. Geology 29(5):419–422

    Article  Google Scholar 

  • Cronin SJ et al (2004) Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bull Volcanol 66(7):652

    Article  Google Scholar 

  • De Finetti B (1974) Theory of probability. Wiley, London

    Google Scholar 

  • Donovan AR (2010) Emerald and andesite: volcanology at the policy interface on Montserrat. Unpublished PhD thesis, University of Cambridge, Cambridge

    Google Scholar 

  • Donovan AR, Oppenheimer C, Bravo M (2011) Rationalising a crisis through literature: Montserratian verse and the descriptive reconstruction of an island. J Volcanol Geotherm Res 203(3–4):87–101

    Article  Google Scholar 

  • Donovan AR, Oppenheimer C (2010) The 2010 Eyjafjallajokull eruption and the reconstruction of Geography. The Geogr J 177(1):4–11

    Article  Google Scholar 

  • Dove MR (2008) Perception of volcanic eruption as agent of change on Merapi volcano, central java. J Volcanol Geotherm Res 172(3–4):329

    Article  Google Scholar 

  • Druitt TH, Kokelaar BP (eds) (2002) The eruption of the Soufriere hills volcano, Montserrat, from 1995 to 1999, vol 21. Geological Society of London, London

    Google Scholar 

  • Erfurt-Cooper P, Cooper M (2010) Volcano and geothermal tourism: sustainable geo-resources for leisure and recreation. Earthscan, London

    Google Scholar 

  • Esteva L (1969) Seismicity prediction: a Bayesian approach. In: Proceedings of the fourth world conference on earthquake engineering, Santiago

    Google Scholar 

  • Ewert JW, Newhall CG (2004) Status and challenges of volcano monitoring worldwide. In: Proceedings of the 2nd international conference on volcanic ash and aviation safety, 21–24 June, 2004. Office of the Federal Coordinator for Meteorological Services and Supporting Research, Alexandria, session 2, p 9–14

    Google Scholar 

  • Faenza L et al (2010) Bayesian inference on earthquake size distribution: a case study in Italy. Bull Seismol Soc Am 100(1):349–363

    Article  Google Scholar 

  • Finch RH (1943) The seismic prelude to the 1942 eruption of Mauna Loa. Bull Seismol Soc Am 33(4):237–241

    Google Scholar 

  • Fischer F (2004) Are scientists irrational? Risk assessment in practical reason. In: Scoones I, Leach M, Wynne B (eds) Science and citizens: globalisation and the challenge of engagement. Zed Books, London, pp 54–65

    Google Scholar 

  • Fiske R (1984) Volcanologists, journalists and the concerned local public: a tale of two crises in the eastern Caribbean. In: Explosive volcanism: inception, evolution and hazards. National Academy Press, Washington, DC

    Google Scholar 

  • Francis P, Oppenheimer C (2004) Volcanoes. Oxford University Press, Oxford

    Google Scholar 

  • Gaillard J-C (2008) Alternative paradigms of volcanic risk perception: the case of Mt. Pinatubo in the Philippines. J Volcanol Geotherm Res 172(3–4):315

    Article  Google Scholar 

  • Geller RJ (1997) Earthquake prediction: a critical review. Geophys J Int 131(3):425–450

    Article  Google Scholar 

  • Gelman A (2008) Objections to Bayesian statistics. Bayesian Analysis 3(3):445–450

    Google Scholar 

  • Gelman A et al (2004) Bayesian data analysis. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  • Gibbons M et al (1994) The New production of knowledge: the dynamics of science and research in contemporary societies. Sage, London

    Google Scholar 

  • Gigerenzer G (2008) Why heuristics work. Perspect Psychol Sci 3(1):20

    Article  Google Scholar 

  • Gigerenzer G et al (2005) ‘A 30% Chance of rain tomorrow’: how does the public understand probabilistic weather forecasts? Risk Anal 25(3):623–629

    Article  Google Scholar 

  • Hamilton W (1772) Observations of mount Vesuvius mount Etna and other volcanoes. T. Cradell, London

    Google Scholar 

  • Haynes K et al (2007) The issue of trust and its influence on risk communication during a volcanic crisis. Bull Volcanol 70(5):605–621

    Article  Google Scholar 

  • Haynes K et al (2008) Whose reality counts? Factors affecting the perception of volcanic risk. J Volcanol Geotherm Res 172(3–4):259

    Article  Google Scholar 

  • Hillerbrand R, Ghil M (2008) Anthopogenic climate change: scientific uncertainties and moral dilemmas. Physica D 237:2132–2138

    Article  Google Scholar 

  • Hincks T (2005) Probabilistic volcano hazard and risk assessment. PhD dissertation, University of Bristol, Bristol

    Google Scholar 

  • Hulme M (2009) Why we disagree about climate change: understanding controversy, inaction and opportunity. Cambridge University Press, Cambridge

    Google Scholar 

  • Hulme M, Mahony M (2010) Climate change: what do we know about the Ipcc? Prog Phys Geogr 34(5):705–718

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (2006) Extreme natural hazards: population growth, globalization and environmental change. Phil Trans R Soc AMath Phys Eng Sci 364(1845):1875–1888

    Article  Google Scholar 

  • Ives RL (1937) Volcanic eruptions predicted. Sci News Lett 32(860):218

    Article  Google Scholar 

  • Jackson J (2006) Fatal attraction: living with earthquakes, the growth of villages into megacities, and earthquake vulnerability in the modern world. Phil Trans R Soc A: Math Phys Eng Sci 364(1845):1911–1925

    Article  Google Scholar 

  • Johnston AC, Nava SJ (1985) Recurrence rates and probability estimates for the New Madrid seismic zone. J Geophys Res 90(B8):6737

    Article  Google Scholar 

  • Kahan D (2010) Fixing the communications failure. Nature 463(7279):296

    Article  Google Scholar 

  • Kahan DM et al (2009) Cultural cognition of the risks and benefits of nanotechnology. Nat Nano 4(2):87

    Article  Google Scholar 

  • Kanamori H (2006) Lessons from the 2004 Sumatra-Andaman earthquake. Phil Trans R Soc A: Math Phys Eng Sci 364(1845):1927–1945

    Article  Google Scholar 

  • Kilburn CRJ (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125(3–4):271

    Article  Google Scholar 

  • Kilburn CRJ, Sammonds PR (2005) Maximum warning times for imminent volcanic eruptions. Geophys Res Lett 32(24):L24313

    Article  Google Scholar 

  • Krinitzsky EL (1995) Deterministic versus probabilistic seismic hazard assessment for critical structures. Eng Geol 40(1–2):1–7

    Google Scholar 

  • Lacroix A (1904) La Montagne Pele E Ses Eruptions. Masson, Paris

    Google Scholar 

  • Leonard GS et al (2008) Developing effective warning systems: ongoing research at Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 172(3–4):199

    Article  Google Scholar 

  • Lindell MK, Perry RW (1993) Risk area residents’ changing perceptions of volcano hazard at Mt St Helens. In: Newec JJ et al (eds) Prediction and perception of natural hazards. Springer, Berlin, pp 159–166

    Google Scholar 

  • Lowenstern JB et al (2006) Monitoring super-volcanoes: geophysical and geochemical signals at yellowstone and other large caldera systems. Phil Trans R Soc A: Math Phys Eng Sci 364(1845):2055–2072

    Article  Google Scholar 

  • MacGregor A (1949) Prediction in relation to seismo-volcanic phenomena in the Caribbean volcanic Arc. Bull Volcanol 8(1):69

    Article  Google Scholar 

  • Marzocchi W et al (2006) A quantitative model for volcanic hazard assessment. In: Coles S, Mader HM, Connor C, Connor L (eds) Statistics in volcanology, vol 1, Special publications of Iavcei. Geological Society, London

    Google Scholar 

  • Marzocchi W et al (2007) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70(5):623–632

    Article  Google Scholar 

  • Marzocchi W, Woo G (2009) Principles of volcanic risk metrics: theory and the case study of mount Vesuvius and Campi Flegrei, Italy. J Geophys Res 114(B3):B03213

    Article  Google Scholar 

  • Mason BM et al (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66(8):735–748

    Article  Google Scholar 

  • Matthews RAJ (1997) Decision-theoretic limits on earthquake prediction. Geophys J Int 131(3):526–529

    Article  Google Scholar 

  • McGuire RK (2001) Deterministic vs probabilistic seismic hazards and risk. Soil Dyn Earthq Eng 21(5):377–384

    Article  Google Scholar 

  • McGuire RK (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct Dyn 37:329–338

    Article  Google Scholar 

  • McKenzie D, Parker RL (1967) The north pacific: an example of tectonics on a sphere. Nature 216:1276–1280

    Article  Google Scholar 

  • Melnik O, Sparks R (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41

    Article  Google Scholar 

  • Mitchell T (2006) Building a disaster resilient future: lessons from participatory research on St Kitts and Montserrat. Unpublished PhD thesis, University College London, London

    Google Scholar 

  • Moore JG, Rice CJ (1984) Chronology and character of the May 18, 1980, explosive eruptions of mount St Helens. In: Explosive volcanism: inception, evolution and hazards. National Academy Press, Washington, DC

    Google Scholar 

  • Morgan WJ (1968) Rises, trenches, great faults and crustal blocks. J Geophys Res 73(6):1959–1982

    Article  Google Scholar 

  • Neri A et al (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178(3):397

    Article  Google Scholar 

  • Newhall C, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20

    Article  Google Scholar 

  • Newhall C, Punongbayan R (1996) The narrow margin of successful volcanic-risk mitigation. In: Tilling RI, Scarpa R (eds) Monitoring and mitigation of volcano hazards. Springer, New York, pp 807–832

    Chapter  Google Scholar 

  • Newhall CG et al (1999) Professional conduct of scientists during volcanic crises. Bull Volcanol 60:323–334

    Article  Google Scholar 

  • O’Hagan A et al (2006) Uncertain judgements: eliciting Experts’ probabilities. Wiley, London

    Book  Google Scholar 

  • Oreskes N et al (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147):641–646

    Article  Google Scholar 

  • Oreskes N, Le Grand H (eds) (2003) Plate tectonics: an insider’s history of the modern theory of the earth. Westview Press, Oxford

    Google Scholar 

  • Pattullo P (2000) Fire from the mountain: the tragedy of Montserrat and the betrayal of its people. Constable, London

    Google Scholar 

  • Perry RW, Greene M (1983) Citizen response to volcanic eruptions: the case of Mount St Helens. Irvington Press, New York

    Google Scholar 

  • Perry RW, Lindell MK (2008) Volcanic risk perception and adjustment in a multi-hazard environment. J Volcanol Geotherm Res 172(3–4):170

    Article  Google Scholar 

  • Pidgeon N et al (2003) The social amplification of risk. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reasenberg PA, Simpson RW (1992) Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255(5052):1687–1690

    Article  Google Scholar 

  • Renn O (2008) Risk governance. Earthscan, London

    Book  Google Scholar 

  • Roeser S (2007) Ethical intuitions about risk. Saf Sci 11(3):1–13

    Google Scholar 

  • Roeser S (2010) Intuitions, emotions and Gut reactions in decisions about risks: towards a different interpretation of “neuroethics”. J Risk Res 13(2):175–190

    Article  Google Scholar 

  • Roeser S (2009) The relation between cognition and affect in moral judgements about risks. In: Asveld L, Roeser S (eds) The ethics of technological risk. Earthscan, London

    Google Scholar 

  • Roeser S (2006) The role of emotions in judging the moral acceptability of risks. Saf Sci 44(8):689

    Article  Google Scholar 

  • Sackett DL, Rosenberg WMC (1995) On the need for evidence-based medicine. J Public Health 17(3):330–334

    Google Scholar 

  • Sackett DL et al (1996) Evidence based medicine: what it is and what it isn’t. BMJ 312(7023):71–72

    Article  Google Scholar 

  • Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Phil Trans R Soc A: Math Phys Eng Sci 364(1845):2073–2097

    Article  Google Scholar 

  • Shackley S, Wynne B (1996) Representing uncertainty in global climate change science and policy: boundary-ordering devices and authority. Sci Technol Hum Value 21(3):275–302

    Article  Google Scholar 

  • Shackley S et al (1998) Uncertainty, complexity and concepts of good science in climate change modelling: are GCMs the best tools? Clim Chang 38(2):159

    Article  Google Scholar 

  • Sieh K (2006) Sumatran megathrust earthquakes: from science to saving lives. Phil Trans R Soc A: Math Phys Eng Sci 364(1845):1947–1963

    Article  Google Scholar 

  • Sigurdsson H (1999) Melting the earth: the history of ideas on volcanic eruptions. Oxford University Press, Oxford

    Google Scholar 

  • Sjoberg L (2008) Antagonism, trust and perceived risk. Risk Manage 10:32–55

    Article  Google Scholar 

  • Sjoberg L (2000) Factors in risk perception. Risk Anal 20:1–11

    Article  Google Scholar 

  • Slovic P (2000) The perception of risk. Earthscan, London

    Google Scholar 

  • Slovic P et al (2004) Risk as analysis and risk as feelings: some thoughts about affect, reason, risk, and rationality. Risk Anal 24(2):311

    Article  Google Scholar 

  • Smil V (2008) Global catastrophes and trends: the next fifty years. MIT Press, Cambridge

    Google Scholar 

  • Solana MC et al (2008) Communicating eruption and hazard forecasts on Vesuvius, southern Italy. J Volcanol Geotherm Res 172(3–4):308

    Article  Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sc Lett 210:1–15

    Article  Google Scholar 

  • Sparks RSJ (2007) Use the calm between the storms. Nature 450:354

    Article  Google Scholar 

  • Spence R et al (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst Sci 5:477–495

    Article  Google Scholar 

  • Spence R et al (2008) Modelling the impact of a hypothetical Sub-plinian eruption at La soufrière of Guadeloupe (lesser Antilles). J Volcanol Geotherm Res 178(3):516

    Article  Google Scholar 

  • Spence R (2009) Earthquake risk mitigation: the global challenge. In: Tankut AT (ed) Earthquakes and tsunamis, vol 11, Geotechnical, geological and earthquake engineering. Springer, Dordrecht

    Chapter  Google Scholar 

  • Spiegelhalter D, Riesch H (in review) Don’t know, can’t know: embracing scientific uncertainty when analyzing risks

    Google Scholar 

  • Stein RS et al (2006) A New probabilistic seismic hazard assessment for greater Tokyo. Phil Trans R Soc A: Math Phys Eng Sci 364(1845):1965–1988

    Article  Google Scholar 

  • Stirling A (2007) Risk, precaution and science: towards a more constructive policy debate. EMBO Rep 8(4):309–315

    Article  Google Scholar 

  • Stirling A (2008) Opening up and closing down. Sci Technol Hum Value 33(2):262–294

    Article  Google Scholar 

  • Taleb NN (2007) The black swan: the impact of the highly improbable. Allen Lane, London

    Google Scholar 

  • Tayag JC, Punongbayan RS (1994) Volcanic disaster mitigation in the Philippines: experience from mount Pinatubo. Disasters 18(1):1–15

    Article  Google Scholar 

  • Tazieff H (1977) La Soufriere, volcanology and forecasting. Nature 269:96–97

    Article  Google Scholar 

  • Tilling RI (2008) The critical role of volcano monitoring in risk reduction. Adv Geosci 14:3–11

    Article  Google Scholar 

  • Voight B (1988) A method for prediction of volcanic eruptions. Nature 332:125–130

    Article  Google Scholar 

  • Wadge G, Isaacs M (1988) Mapping the volcanic hazards from the Soufriere hills volcano, Montserrat, west indies, using an image processor. J Geol Soc Lond 145:541–551

    Article  Google Scholar 

  • Waesche HH (1942) Ground tilt at Kilauea volcano. J Geol 50(6):643

    Article  Google Scholar 

  • Wang Z (2009) Seismic hazard vs seismic risk. Seismol Res Lett 80(5):673–674

    Article  Google Scholar 

  • Wang Z (2010) Seismic hazard assessment: issues and alternatives. Pure Appl Geophys 168(1–2):11–25. doi:10.1007/s00024-010-0148-3

    Google Scholar 

  • Wilson T et al (2009) Vulnerability of farm water supply systems to volcanic Ash fall. Environ Earth Sci 61(4):675

    Article  Google Scholar 

  • Winchester S (2003) Krakatoa: the day the world exploded. Viking, Camberwell

    Google Scholar 

  • Wisner B et al (2004) At risk: natural hazards, people’s vulnerability and disasters. Routledge, London

    Google Scholar 

  • Witham CS, Oppenheimer C (2004) Mortality in England during the 1783-4 Laki Craters eruption. Bull Volcanol 67(1):15–26

    Article  Google Scholar 

  • Woo G (1999) The mathematics of natural catastrophes. Imperial College Press, London

    Book  Google Scholar 

  • Wynne B (1992) Uncertainty and environmental learning: reconceiving science and policy in the preventive paradigm. Glob Environ Chang 2(2):111–127

    Article  Google Scholar 

  • Young DA (2003) Mind over magma: the story of igneous petrology. Princeton University Press, Princeton

    Google Scholar 

  • Zerefos CS et al (2007) Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings. Atmos Chem Phys Discuss 7(2):5145–5172

    Article  Google Scholar 

  • Zuccaro G et al (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geotherm Res 178(3):416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Donovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Donovan, A. (2012). Earthquakes and Volcanoes: Risk from Geophysical Hazards. In: Roeser, S., Hillerbrand, R., Sandin, P., Peterson, M. (eds) Handbook of Risk Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1433-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1433-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1432-8

  • Online ISBN: 978-94-007-1433-5

  • eBook Packages: Humanities, Social Sciences and Law

Publish with us

Policies and ethics