Skip to main content

Neurosteroids and Synaptic Formation in the Cerebellum

  • Reference work entry
  • 444 Accesses

Abstract

The cerebellar cortex has been used as an excellent model to study synaptic formation and transmission of neural networks because it forms relatively simple neuronal networks compared to those of other brain regions. The formation of the mammalian cerebellar cortex becomes complete in the neonate through the processes of migration of external granule cells, neuronal and glial growth, and synaptogenesis. It is important to clarify the mechanism underlying synaptic formation of cerebellar neuronal networks during development. The brain has traditionally been considered to be a target site of peripheral steroid hormones. In contrast to this classical concept, new findings have shown that the brain has the capacity to synthesize steroids de novo from cholesterol, the so-called neurosteroids. In the middle 1990s, the Purkinje cell, a principal cerebellar neuron, was identified as a major site for neurosteroid formation in mammals as well as other vertebrates. This discovery has provided the opportunity to understand neuronal neurosteroidogenesis in the brain. In addition, biological actions of neurosteroids have become clear by the studies using the Purkinje cell as an excellent cellular model, which is known to play an important role in memory and learning processes. Based on extensive studies on mammals over the past decade, it is considered that the Purkinje cell actively synthesizes progesterone and estradiol de novo from cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such neurosteroid actions that may be mediated by neurotrophic factors contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone (3α,5α-tetrahydroprogesterone), a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. This chapter summarizes the current knowledge regarding the biosynthesis and biological actions of neurosteroids in the cerebellum during development in terms of synaptic formation of cerebellar neuronal networks.

This is a preview of subscription content, log in via an institution.

References

  • Agís-Balboa RC, Pinna G, Zhubi A et al (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci USA 103:14602–14607

    Article  PubMed  CAS  Google Scholar 

  • Agís-Balboa RC, Pinna G, Pibiri F et al (2007) Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice. Proc Natl Acad Sci USA 104:18736–18741

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972a) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–397

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972b) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–463

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48

    Article  PubMed  CAS  Google Scholar 

  • Azcoitia I, Sierra A, Garcia-Segura LM (1999) Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signaling. J Neurosci Res 58:815–822

    Article  PubMed  CAS  Google Scholar 

  • Bates B, Rios M, Trumpp A et al (1999) Neurotrophin-3 is required for proper cerebellar development. Nat Neurosci 2:115–117

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE (1997) Neurosteroids: of the nervous system, by the nervous system, for the nervous system (review). Rec Prog Horm Res 52:1–32

    PubMed  CAS  Google Scholar 

  • Baulieu EE, Robel P (1998) Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Proc Natl Acad Sci USA 95:4089–4091

    Article  PubMed  CAS  Google Scholar 

  • Borghesani PR, Peyrin JM, Klein R et al (2002) BDNF stimulates migration of cerebellar granule cells. Development 129:1435–1442

    PubMed  CAS  Google Scholar 

  • Brake WG, Alves SE, Dunlop JC et al (2001) Novel target sites for estrogen action in the dorsal hippocampus: an examination of synaptic proteins. Endocrinology 142:1284–1289

    Article  PubMed  CAS  Google Scholar 

  • Cahill MA (2007) Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol 105:16–36

    Article  PubMed  CAS  Google Scholar 

  • Carswell HVO, Dominiczak AF, Garcia-Segura LM et al (2005) Brain aromatase expression after experimental stroke: topography and time course. J Steroid Biochem Mol Biol 96:89–91

    Article  PubMed  CAS  Google Scholar 

  • Carter AR, Chen C, Schwartz PM et al (2002) Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22:1316–1327

    PubMed  CAS  Google Scholar 

  • Chan JR, Rodriguez-Waitkus PM, Ng BK et al (2000) Progesterone synthesized by Schwann cells during myelin formation regulates neuronal gene expression. Mol Biol Cell 11:2283–2295

    PubMed  CAS  Google Scholar 

  • Choi JM, Romeo RD, Brake WG et al (2003) Estradiol increases pre- and post-synaptic proteins in the CA1 region of the hippocampus in female rhesus macaques (Macaca mulatta). Endocrinology 144:4734–4738

    Article  PubMed  CAS  Google Scholar 

  • Clark BJ, Wells J, King SR et al (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269:28314–28322

    PubMed  CAS  Google Scholar 

  • Compagnone NA, Mellon SH (1998) Dehydroepiandrosterone: a potential signaling molecule for neocortical organization during development. Proc Natl Acad Sci USA 95:4678–4683

    Article  PubMed  CAS  Google Scholar 

  • Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators (review). Front Neuroendocrinol 21:1–56

    Article  PubMed  CAS  Google Scholar 

  • Compagnone NA, Bulfone A, Rubenstein JLR et al (1995) Steroidogenic enzyme P450c17 is expressed in the embryonic central nervous system. Endocrinology 136:5212–5223

    Article  PubMed  CAS  Google Scholar 

  • Corpéchot C, Robel P, Axelson M et al (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 78:4704–4707

    Article  PubMed  Google Scholar 

  • Corpéchot C, Synguelakis M, Talha S et al (1983) Pregnenolone and its sulfate ester in rat brain. Brain Res 270:119–125

    Article  PubMed  Google Scholar 

  • Do-Rego JL, Seong JY, Burel D et al (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30:259–301

    Article  PubMed  CAS  Google Scholar 

  • Drake EB, Henderson VW, Stanczyk FZ et al (2000) Associations between circulating sex steroid hormones and cognition in normal elderly women. Neurology 54:599–603

    Article  PubMed  CAS  Google Scholar 

  • Engmann L, Losel R, Wehling M et al (2006) Progesterone regulation of human granulosa/luteal cell viability by an RU486-independent mechanism. J Clin Endocrinol Metab 91:4962–4968

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150

    Article  PubMed  CAS  Google Scholar 

  • Freking F, Nazairians T, Schlinger BA (2000) The expression of the sex steroid-synthesizing enzymes CYP11A1, 3β-HSD, CYP17, and CYP19 in gonads and adrenals of adult and developing zebra finches. Gen Comp Endocrinol 119:140–151

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Walf AA (2008) Effects of progesterone administration and APPswe + PSEN1Δe9 mutation for cognitive performance of mid-aged mice. Neurobiol Learn Mem 89:17–26

    Article  PubMed  CAS  Google Scholar 

  • Furukawa A, Miyatake A, Ohnishi T et al (1998) Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: colocalization of StAR, cytochrome P-450scc (CYP XIA1), and 3β-hydroxysteroid dehydrogenase in the rat brain. J Neurochem 71:2231–2238

    Article  PubMed  CAS  Google Scholar 

  • Ghoumari AM, Dusart I, El-Etr M et al (2003) Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc Natl Acad Sci USA 100:7953–7958

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Woolley CS, Frankfurt M et al (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 10:1286–1291

    PubMed  CAS  Google Scholar 

  • Griffin LD, Gong W, Verot L et al (2004) Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 10:704–711

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Rapp PR, Janssen WG et al (2007) Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Natl Acad Sci USA 104:11465–11470

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi S, Koyama T, Hasunuma I et al (2010) Prolactin increases the synthesis of 7α-hydroxypregnenolone, a key factor for induction of locomotor activity, in breeding male newts. Endocrinology 151:2211–2222

    Article  PubMed  CAS  Google Scholar 

  • Hofer M, Pagliusi SR, Hohn A et al (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9:2459–2464

    PubMed  CAS  Google Scholar 

  • Hojo Y, Hattori TA, Enami T et al (2004) Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017α and P450 aromatase localized in neurons. Proc Natl Acad Sci USA 101:865–870

    Article  PubMed  CAS  Google Scholar 

  • Honda S, Harada N, Ito S et al (1998) Disruption of sexual behavior in male aromatase-deficient mice lacking exons 1 and 2 of the cyp19 gene. Biochem Biophys Res Commun 252:445–449

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Nagai A, Ikeda MA et al (2003) Sexually dimorphic and estrogen-dependent expression of estrogen receptor beta in the ventromedial hypothalamus during rat postnatal development. Endocrinology 144:5098–5115

    Article  PubMed  CAS  Google Scholar 

  • Inai Y, Nagai K, Ukena K et al (2003) Seasonal changes in neurosteroids in the urodele brain and environmental factors inducing their changes. Brain Res 959:214–225

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DM, Tang MX, Stern Y et al (1998) Cognitive function in nondemented older women who took estrogen after menopause. Neurology 50:368–373

    Article  PubMed  CAS  Google Scholar 

  • Jakab RL, Wong JK, Belcher SM (2001) Estrogen receptor β immunoreactivity in differentiating cells of the developing rat cerebellum. J Comp Neurol 430:396–409

    Article  PubMed  CAS  Google Scholar 

  • Jo DH, Abdallah MA, Young J et al (1989) Pregnenolone, dehydroepiandrosterone, and their sulfate and fatty acid esters in the rat brain. Steroids 54:287–297

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Parada LF, Coulier F et al (1990) TrkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J 8:3701–3709

    Google Scholar 

  • Koenig HL, Schumacher M, Ferzaz B et al (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Mathur C, Prasad VVK, Raju VS et al (1993) Steroids and their conjugates in the mammalian brain. Proc Natl Acad Sci USA 90:85–88

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga M, Ukena K, Tsutsui K (2001) Expression and localization of cytochrome P450 17α-hydroxylase/c17, 20-lyase in the avian brain. Brain Res 899:112–122

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga M, Ukena K, Tsutsui K (2002) Androgen biosynthesis in the quail brain. Brain Res 948:180–185

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga M, Ukena K, Baulieu EE et al (2004) 7α-Hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts by means of the dopaminergic system. Proc Natl Acad Sci USA 101:17282–17287

    Article  PubMed  CAS  Google Scholar 

  • McDonnell DP, Clemm DL, Hermann T et al (1995) Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol 9:659–669

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Akama K, Alves S et al (2001) Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation (review). Proc Natl Acad Sci USA 98:7093–7100

    Article  PubMed  CAS  Google Scholar 

  • Mellon SH, Deschepper CF (1993) Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 629:283–292

    Article  PubMed  CAS  Google Scholar 

  • Mellon SH, Vaudry H (2001) Biosynthesis of neurosteroids and regulation of their synthesis (review). Int Rev Neurobiol 46:33–78

    Article  PubMed  CAS  Google Scholar 

  • Mensah-Nyagan AG, Feuilloley M, Dupont E et al (1994) Immunocytochemical localization and biological activity of 3β-hydroxysteroid dehydrogenase in the central nervous system of the frog. J Neurosci 14:7306–7318

    PubMed  CAS  Google Scholar 

  • Mensah-Nyagan AG, Do-Rego JL, Feuilloley M et al (1996a) In vivo and in vitro evidence for the biosynthesis of testosterone in the telencephalon of the female frog. J Neurochem 67:413–422

    Article  PubMed  CAS  Google Scholar 

  • Mensah-Nyagan AG, Feuilloley M, Do-Rego JL et al (1996b) Localization of 17β-hydroxysteroid dehydrogenase and characterization of testosterone in the brain of the male frog. Proc Natl Acad Sci USA 93:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Mensah-Nyagan AG, Do-Rego JL, Beaujean D et al (1999) Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system (review). Pharmacol Rev 51:63–81

    PubMed  CAS  Google Scholar 

  • Mensah-Nyagan AG, Beaujean D, Luu-The V et al (2001) Anatomical and biochemical evidence for the synthesis of unconjugated and sulfated neurosteroids in amphibians (review). Brain Res Rev 37:13–24

    Article  PubMed  CAS  Google Scholar 

  • Murphy DD, Segal M (1996) Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. J Neurosci 16:4059–4068

    PubMed  CAS  Google Scholar 

  • Orikasa C, Kondo Y, Hayashi S et al (2002) Sexually dimorphic expression of estrogen receptor beta in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge. Proc Natl Acad Sci USA 99:3306–3309

    Article  PubMed  CAS  Google Scholar 

  • Paech K, Webb P, Kuiper GG et al (1997) Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science 277:1508–1510

    Article  PubMed  CAS  Google Scholar 

  • Peluso JJ, Pappalardo A, Losel R et al (2006) Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone’s antiapoptotic action. Endocrinology 147:3133–3140

    Article  PubMed  CAS  Google Scholar 

  • Pérez J, Luquín S, Naftolin F et al (1993) The role of estradiol and progesterone in phased synaptic remodeling of the rat arcuate nucleus. Brain Res 608:38–44

    Article  PubMed  Google Scholar 

  • Price RH, Handa RJ (2000) Expression of estrogen receptor-β protein and mRNA in the cerebellum of the rat. Neurosci Lett 288:115–118

    Article  PubMed  CAS  Google Scholar 

  • Robel P, Baulieu EE (1985) Neuro-steroids, 3β-hydroxy-Δ5-derivatives in the rodent brain. Neurochem Int 7:953–958

    Article  PubMed  CAS  Google Scholar 

  • Robel P, Corpéchot C, Clarke C et al (1986) Neuro-steroids: 3β-hydroxy-Δ5-derivatives in the rat brain. In: Fink G, Harmar AJ, McKerns KW (eds) Neuroendocrine molecular biology. Plenum, New York

    Google Scholar 

  • Rocamora N, Garcia-Ladona FJ, Palacios JM et al (1993) Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Brain Res Mol Brain Res 17:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Ukena K, Tsutsui K (2001a) Activity and localization of 3β-hydroxysteroid dehydrogenase/Δ54-isomerase in the zebrafish central nervous system. J Comp Neurol 439:291–305

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Ukena K, Tsutsui K (2001b) Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci 21:6221–6232

    PubMed  CAS  Google Scholar 

  • Sakamoto H, Ukena K, Tsutsui K (2002) Dendritic spine formation in response to progesterone synthesized de novo in the developing Purkinje cell in rats. Neurosci Lett 322:111–115

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Mezaki Y, Shikimi H et al (2003a) Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology 144:4466–4477

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Shikimi H, Ukena K et al (2003b) Neonatal expression of progesterone receptor isoforms in the cerebellar Purkinje cell in rats. Neurosci Lett 343:163–166

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Ukena K, Takemori H et al (2004) Expression and localization of 25-Dx, a membrane-associated putative progesterone-binding protein, in the developing Purkinje cell. Neuroscience 126:325–334

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Ukena K, Kawata M et al (2008) Expression, localization and possible actions of 25-Dx, a membraneassociated putative progesterone-binding protein, in the developing Purkinje cell of the cerebellum: a new insight into the biosynthesis, metabolism and multiple actions of progesterone as a neurosteroid (review). Cerebellum 7:18–25

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Shikimi H, Haraguchi S et al (2007) Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J Neurosci 27:7408–7417

    Article  PubMed  CAS  Google Scholar 

  • Schlinger BA, Lane NI, Grisham W et al (1999) Androgen synthesis in a songbird: a study of cyp17 (17α-hydroxylase/c17,20-lyase) activity in the zebra finch. Gen Comp Endocrinol 113:46–58

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Weill-Engerer S, Liere P et al (2003) Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 71:3–29

    Article  PubMed  CAS  Google Scholar 

  • Schwartz PM, Borghesani PR, Levy RL et al (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  PubMed  CAS  Google Scholar 

  • Segal RA, Pomeroy SL, Stiles CD (1995) Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci 15:4970–4981

    PubMed  CAS  Google Scholar 

  • Shughrue PJ, Scrimo PJ, Merchenthaler I (2000) Estrogen binding and estrogen receptor characterization (ERα and ERβ) in the cholinergic neurons of the rat basal forebrain. Neuroscience 96:41–49

    Article  PubMed  CAS  Google Scholar 

  • Sohrabji F, Miranda RC, Toran-Allerand CD (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Alday NA, Hau M et al (2003) DHEA metabolism by 3β-HSD in adult zebra finch brain: sex difference and rapid effect of stress. Endocrinology 145:1668–1677

    Article  PubMed  CAS  Google Scholar 

  • Takase M, Ukena K, Yamazaki T et al (1999) Pregnenolone, pregnenolone sulfate and cytochrome P450 side-chain cleavage enzyme in the amphibian brain and their seasonal changes. Endocrinology 140:1936–1944

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K (2006a) Biosynthesis and organizing action of neurosteroids in the developing Purkinje cell (review). Cerebellum 5:89–96

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K (2006b) Biosynthesis, mode of action and functional significance of neurosteroids in the developing Purkinje cell (review). J Steroid Biochem Mol Biol 102:187–194

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K (2008a) Progesterone biosynthesis and action in the developing neuron (review). Endocrinology 149:2757–2761

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K (2008b) Neurosteroids in the Purkinje cell: biosynthesis, mode of action and functional significance (review). Mol Neurobiol 37:116–125

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Mellon SH (2006) Neurosteroids in the brain neuron: biosynthesis, action and medicinal impact on neurodegenerative disease (review). Cent Nerv Syst Agents Med Chem 6:73–82

    Article  CAS  Google Scholar 

  • Tsutsui K, Schlinger BA (2001) Steroidogenesis in the avian brain. In: Dawson A, Chaturvedi CM (eds) Avian endocrinology. Narosa Publishing House, New Delhi

    Google Scholar 

  • Tsutsui K, Ukena K (1999) Neurosteroids in the cerebellar Purkinje neuron and their actions (review). Int J Mol Med 4:49–56

    PubMed  CAS  Google Scholar 

  • Tsutsui K, Yamazaki T (1995) Avian neurosteroids. I. Pregnenolone biosynthesis in the quail brain. Brain Res 678:1–9

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Usui M, Yamazaki T et al (1997a) Neurosteroids in the avian brain. In: Maitra SK (ed) Frontiers in environmental and metabolic endocrinology. Burdwan Press, Burdwan

    Google Scholar 

  • Tsutsui K, Yamazaki T, Usui M et al (1997b) P450scc activity in the brain. In: Harvey S, Etches RJ (eds) Perspectives in avian endocrinology. J Endocrinol, Bristol

    Google Scholar 

  • Tsutsui K, Ukena K, Takase M et al (1999) Neurosteroid biosynthesis in vertebrate brains (review). Comp Biochem Physiol C 124:121–129

    PubMed  CAS  Google Scholar 

  • Tsutsui K, Ukena K, Usui M et al (2000) Novel brain function: biosynthesis and actions of neurosteroids in neurons (review). Neurosci Res 36:261–273

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Matsunaga M, Ukena K (2003a) Biosynthesis and biological actions of neurosteroids in the avian brain (review). Avian Poultry Biol Rev 14:63–78

    Article  Google Scholar 

  • Tsutsui K, Sakamoto H, Ukena K (2003b) Biosynthesis and action of neurosteroids in the cerebellar Purkinje neuron. J Steroid Biochem Mol Biol 85:311–321

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Ukena K, Sakamoto H (2003c) A novel aspect of the cerebellum: biosynthesis of neurosteroids in the Purkinje cell (review). Cerebellum 2:215–222

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Sakamoto H, Shikimi H et al (2004) Organizing actions of neurosteroids in the Purkinje neuron (review). Neurosci Res 49:273–279

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Matsunaga M, Miyabara et al (2006) Neurosteroid biosynthesis in the quail brain (review). J Exp Zool 305A:733–742

    Article  CAS  Google Scholar 

  • Ukena K, Usui M, Kohchi C et al (1998) Cytochrome P450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology 139:137–147

    Article  PubMed  CAS  Google Scholar 

  • Ukena K, Honda Y, Inai Y et al (1999a) Expression and activity of 3β-hydroxysteroid dehydrogenase/Δ54-isomerase in different regions of the avian brain. Brain Res 818:536–542

    Article  PubMed  CAS  Google Scholar 

  • Ukena K, Kohchi C, Tsutsui K (1999b) Expression and activity of 3β-hydroxysteroid dehydrogenase/Δ54-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology 140:805–813

    Article  PubMed  CAS  Google Scholar 

  • Ukena K, Honda Y, Lea RW et al (2001) Developmental changes in progesterone biosynthesis and metabolism in the quail brain. Brain Res 898:190–194

    Article  PubMed  CAS  Google Scholar 

  • Usui M, Yamazaki T, Kominami S et al (1995) Avian neurosteroids. II. Localization of a cytochrome P450scc-like substance in the quail brain. Brain Res 678:10–20

    Article  PubMed  CAS  Google Scholar 

  • Vanson A, Arnold AP, Schlinger BA (1996) 3β-Hydroxysteroid dehydrogenase/isomerase and aromatase activity in primary cultures of developing zebra finch telencephalon: dehydroepiandrosterone as substrate for synthesis of androstenedione and estrogens. Gen Comp Endocrinol 102:342–350

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Xie K, Lu B (1995) Neurotrophins promote maturation of developing neuromuscular synapses. J Neurosci 15:4796–4805

    PubMed  CAS  Google Scholar 

  • Webb P, Lopez GN, Uht RM et al (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9:443–456

    Article  PubMed  CAS  Google Scholar 

  • Woolley CS, McEwen BS (1994) Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci 14:7680–7687

    PubMed  CAS  Google Scholar 

  • Woolley CS, Gould E, Frankfurt M et al (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 10:4035–4039

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Hirotaka Sakamoto, Kazuyoshi Ukena, Mariko Usui, Hanako Shikimi, Katsunori Sasahara, Shogo Haraguchi, Asami Sekine, Shin-ichiro Okuyama, Shin-ichiro Honda, Nobuhiro Harada, and Mitsuhiro Kawata for their work cited in this manuscript.

Grant support: Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (18107002, 22132004 and 22227002 to K. T.).

Disclosure Statement: The author has nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Tsutsui Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Tsutsui, K. (2013). Neurosteroids and Synaptic Formation in the Cerebellum. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_42

Download citation

Publish with us

Policies and ethics