Skip to main content

Norepinephrine and Synaptic Transmission in the Cerebellum

  • Reference work entry
Book cover Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Although the presence of norepinephrine (NE) in the mammalian cerebellum was initially controversial, there is now substantial evidence of a role for the NE system in modulating the response properties of individual cerebellar neurons to synaptic inputs rather than transmitting moment-to-moment details of modality specific information. As a result of these cellular actions, the system is capable of regulating cerebellar circuit functions within the context of ongoing voluntary and reflex motor activities and in a manner appropriate to the behavioral state of the organism. The evidence for this mode of operation derives from extensive anatomical, physiological, and pharmacological investigations over a period of more than 40 years. This chapter summarizes those studies and the development of this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ames BN, Shigenaga MK (1992) Oxidants are a major contributor to aging. Ann N Y Acad Sci 663:85–96

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK et al (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90(17):7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Anden NE, Fuxe K et al (1967) Monoamine pathways to the cerebellum and cerebral cortex. Experientia 23(10):838–839

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF (2006) Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67(Suppl 8):7–12

    PubMed  CAS  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42(1):33–84

    Article  PubMed  Google Scholar 

  • Bickford P (1993) Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res 620(1):133–138

    Article  PubMed  CAS  Google Scholar 

  • Bickford PC, Hoffer BJ et al (1986) Diminished interaction of norepinephrine with climbing fiber inputs to cerebellar Purkinje neurons in aged Fischer 344 rats. Brain Res 385(2):405–410

    Article  PubMed  CAS  Google Scholar 

  • Bickford P, Heron C et al (1992) Impaired acquisition of novel locomotor tasks in aged and norepinephrine-depleted F344 rats. Neurobiol Aging 13(4):475–481

    Article  PubMed  CAS  Google Scholar 

  • Bickford PC, Shukitt-Hale B et al (1999) Effects of aging on cerebellar noradrenergic function and motor learning: nutritional interventions. Mech Ageing Dev 111(2–3):141–154

    Article  PubMed  CAS  Google Scholar 

  • Bickford PC, Gould T et al (2000) Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res 866(1–2):211–217

    Article  PubMed  CAS  Google Scholar 

  • Bickford-Wimer P, Pang K et al (1991) Electrically-evoked release of norepinephrine in the rat cerebellum: an in vivo electrochemical and electrophysiological study. Brain Res 558(2):305–311

    Article  PubMed  CAS  Google Scholar 

  • Bloom FE, Hoffer BJ et al (1971) Studies on norepinephrine-containing afferents to Purkinje cells of art cerebellum. I. Localization of the fibers and their synapses. Brain Res 25(3):501–521

    Article  PubMed  CAS  Google Scholar 

  • Burne RA, Woodward DJ (1983) Visual cortical projections to the paraflocculus in the rat. An electrophysiologic study. Exp Brain Res 49(1):55–67

    Article  PubMed  CAS  Google Scholar 

  • Burne RA, Mihailoff GA et al (1978) Visual corticopontine input to the paraflocculus: a combined autoradiographic and horseradish peroxidase study. Brain Res 143(1):139–146

    Article  PubMed  CAS  Google Scholar 

  • Cartford MC, Gould T et al (2004) A central role for norepinephrine in the modulation of cerebellar learning tasks. Behav Cogn Neurosci Rev 3(2):131–138

    Article  PubMed  Google Scholar 

  • Cheun JE, Yeh HH (1992) Modulation of GABAA receptor-activated current by norepinephrine in cerebellar purkinje cells. Neuroscience 51(4):951–960

    Article  PubMed  CAS  Google Scholar 

  • Cheun JE, Yeh HH (1996) Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: cyclic AMP as intracellular intermediary. Neuroscience 74(3):835–844

    Article  PubMed  CAS  Google Scholar 

  • Devilbiss DM, Waterhouse BD (2004) The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat. J Neurosci 24(48):10773–10785

    Article  PubMed  CAS  Google Scholar 

  • Devilbiss DM, Page ME et al (2006) Locus ceruleus regulates sensory encoding by neurons and networks in waking animals. J Neurosci 26(39):9860–9872

    Article  PubMed  CAS  Google Scholar 

  • Di Mauro M, Fretto G et al (2003) Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat: functional effects on neuronal firing. Neurosci Lett 347(2):101–105

    Article  PubMed  Google Scholar 

  • Freedman R, Hoffer BJ et al (1976) Noradrenaline modulation of the responses of the cerebellar Purkinje cell to afferent synaptic activity. Br J Pharmacol 57(4):603–605

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Hoffer BJ et al (1977) Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers. Exp Neurol 55(1):269–288

    Article  PubMed  CAS  Google Scholar 

  • Gemma C, Mesches MH et al (2002) Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar beta -adrenergic function and increases in proinflammatory cytokines. J Neurosci 22(14):6114–6120

    PubMed  CAS  Google Scholar 

  • Gilbert P (1975) How the cerebellum could memorise movements. Nature 254(5502):688–689

    Article  PubMed  CAS  Google Scholar 

  • Gould TJ, Adams CE et al (1997) Beta-adrenergic modulation of GABAergic inhibition in the deep cerebellar nuclei of F344 rats. Neuropharmacology 36(1):75–81

    Article  PubMed  CAS  Google Scholar 

  • Herold S, Hecker C et al (2005) Alpha1-adrenergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. J Neurosci Res 82(4):571–579

    Article  PubMed  CAS  Google Scholar 

  • Hirono M, Obata K (2006) Alpha-adrenoceptive dual modulation of inhibitory GABAergic inputs to Purkinje cells in the mouse cerebellum. J Neurophysiol 95(2):700–708

    Article  PubMed  CAS  Google Scholar 

  • Hirono M, Matsunaga W et al (2008) Developmental enhancement of alpha2-adrenoceptor-mediated suppression of inhibitory synaptic transmission onto mouse cerebellar Purkinje cells. Neuroscience 156(1):143–154

    Article  PubMed  CAS  Google Scholar 

  • Hoffer BJ, Siggins GR et al (1971a) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res 25(3):523–534

    Article  PubMed  CAS  Google Scholar 

  • Hoffer BJ, Siggins GR et al (1971b) Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine. Brain Res 30(2):425–430

    Article  PubMed  CAS  Google Scholar 

  • Hoffer BJ, Siggins GR et al (1973) Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther 184(3):553–569

    PubMed  CAS  Google Scholar 

  • Iversen LL, Glowinski J (1966) Regional studies of catecholamines in the rat brain – II. J Neurochem 13(8):671–682

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Choi JH (2000) Effects of age and dietary restriction on animal model SAMP8 mice with learning and memory impairments. J Nutr Health Aging 4(4):233–238

    PubMed  CAS  Google Scholar 

  • Kirkness EF, Bovenkerk CF et al (1989) Phosphorylation of gamma-aminobutyrate (GABA)/benzodiazepine receptors by cyclic AMP-dependent protein kinase. Biochem J 259(2):613–616

    PubMed  CAS  Google Scholar 

  • Kondo S, Marty A (1997) Protein kinase A-mediated enhancement of miniature IPSC frequency by noradrenaline in rat cerebellar stellate cells. J Physiol 498(Pt 1):165–176

    PubMed  CAS  Google Scholar 

  • Krnjevic K, Phillis JW (1963) Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother 20:471–490

    PubMed  CAS  Google Scholar 

  • Kulik A, Haentzsch A et al (1999) Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glial cells in situ. J Neurosci 19(19):8401–8408

    PubMed  CAS  Google Scholar 

  • Lahdesmaki J, Sallinen J et al (2002) Behavioral and neurochemical characterization of alpha(2A)-adrenergic receptor knockout mice. Neuroscience 113(2):289–299

    Article  PubMed  CAS  Google Scholar 

  • Lin AM, Freund RK et al (1991) Ethanol potentiation of GABA-induced electrophysiological responses in cerebellum: requirement for catecholamine modulation. Neurosci Lett 122(2):154–158

    Article  PubMed  CAS  Google Scholar 

  • Llano I, Gerschenfeld HM (1993) Beta-adrenergic enhancement of inhibitory synaptic activity in rat cerebellar stellate and Purkinje cells. J Physiol 468:201–224

    PubMed  CAS  Google Scholar 

  • McElligott JG, Ebner TJ et al (1986) Reduction of cerebellar norepinephrine alters climbing fiber enhancement of mossy fiber input to the Purkinje cell. Brain Res 397(2):245–252

    Article  PubMed  CAS  Google Scholar 

  • McLean J, Waterhouse BD (1994) Noradrenergic modulation of cat area 17 neuronal responses to moving visual stimuli. Brain Res 667(1):83–97

    Article  PubMed  CAS  Google Scholar 

  • Mitoma H, Konishi S (1999) Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. Neuroscience 88(3):871–883

    Article  PubMed  CAS  Google Scholar 

  • Moises HC, Woodward DJ (1980) Potentiation of GABA inhibitory action in cerebrllum by locus coeruleus stimulation. Brain Res 182(2):327–344

    Article  PubMed  CAS  Google Scholar 

  • Moises HC, Woodward DJ et al (1979) Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Exp Neurol 64(3):493–515

    Article  PubMed  CAS  Google Scholar 

  • Moises HC, Waterhouse BD et al (1981) Locus coeruleus stimulation potentiates Purkinje cell responses to afferent input: the climbing fiber system. Brain Res 222(1):43–64

    Article  PubMed  CAS  Google Scholar 

  • Moises HC, Waterhouse BD et al (1983) Locus coeruleus stimulation potentiates local inhibitory processes in rat cerebellum. Brain Res Bull 10(6):795–804

    Article  PubMed  CAS  Google Scholar 

  • Mori-Okamoto J, Namii Y et al (1991) Subtypes of adrenergic receptors and intracellular mechanisms involved in modulatory effects of noradrenaline on glutamate. Brain Res 539(1):67–75

    Article  PubMed  CAS  Google Scholar 

  • Moxon KA, Devilbiss DM et al (2007) Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study. Brain Res 1147:105–123

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Dahl AL (1975) Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken. J Comp Neurol 162(4):417–432

    Article  PubMed  CAS  Google Scholar 

  • Olson L, Fuxe K (1971) On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. Brain Res 28(1):165–171

    Article  PubMed  CAS  Google Scholar 

  • Parfitt KD, Bickford-Wimer P (1990) Age-related subsensitivity of cerebellar Purkinje neurons to locally applied beta1-selective adrenergic agonist. Neurobiol Aging 11(6):591–596

    Article  PubMed  CAS  Google Scholar 

  • Pentney RJ (1986) Quantitative analysis of dendritic networks of Purkinje neurons during aging. Neurobiol Aging 7(4):241–248

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Zornetzer SF et al (1981) Senescent pathology of cerebellum: Purkinje neurons and their parallel fiber afferents. Neurobiol Aging 2(1):15–25

    Article  PubMed  CAS  Google Scholar 

  • Saitow F, Konishi S (2000) Excitability increase induced by beta-adrenergic receptor-mediated activation of hyperpolarization-activated cation channels in rat cerebellar basket cells. J Neurophysiol 84(4):2026–2034

    PubMed  CAS  Google Scholar 

  • Saitow F, Satake S et al (2000) beta-adrenergic receptor-mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurophysiol 84(4):2016–2025

    PubMed  CAS  Google Scholar 

  • Salmoiraghi GC, Weigh F (1967) Micromethods in neuropharmacology: an approach to the study of anesthetics. Anesthesiology 28:54–64

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Doya K et al (2004) Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44(2–3):103–116

    Article  PubMed  Google Scholar 

  • Segal M, Pickel V et al (1973) The projections of the nucleus locus coeruleus: an autoradiographic study. Life Sci 13(7):817–821

    Article  PubMed  CAS  Google Scholar 

  • Seidman LJ, Valera EM et al (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1263–1272

    Article  PubMed  Google Scholar 

  • Shukitt-Hale B, Lau FC et al (2008) Berry fruit supplementation and the aging brain. J Agric Food Chem 56(3):636–641

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Hoffer BJ et al (1971a) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. 3. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-adenosine monophosphate. Brain Res 25(3):535–553

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Oliver AP et al (1971b) Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science 171(967):192–194

    Article  PubMed  CAS  Google Scholar 

  • Simpson KL, Waterhouse BD, Lin RCS (2002) Characterization of galanin containing axons in rat cerebellum from locus coeruleus: a light and electron microscopic study. Program No. 827.16. 2002 Neuroscience Meeting Planner. Orlando, FL: Society for Neuroscience, 2002. online

    Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-B-hydroxylase as a marker. J Comp Neurol 163(4):467–505

    Article  PubMed  CAS  Google Scholar 

  • Swanson CJ, Perry KW et al (2006) Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 50(6):755–760

    Article  PubMed  CAS  Google Scholar 

  • Sweetnam PM, Lloyd J et al (1988) Phosphorylation of the GABAa/benzodiazepine receptor alpha subunit by a receptor-associated protein kinase. J Neurochem 51(4):1274–1284

    Article  PubMed  CAS  Google Scholar 

  • Tan HS, Collewijn H (1992) Cholinergic and noradrenergic stimulation in the rabbit flocculus have synergistic facilitatory effects on optokinetic responses. Brain Res 586(1):130–134

    Article  PubMed  CAS  Google Scholar 

  • Tan HS, van Neerven J et al (1991) Effects of alpha-noradrenergic substances on the optokinetic and vestibulo-ocular responses in the rabbit: a study with systemic and intrafloccular injections. Brain Res 562(2):207–215

    Article  PubMed  CAS  Google Scholar 

  • van Neerven J, Pompeiano O et al (1991) Effects of GABAergic and noradrenergic injections into the cerebellar flocculus on vestibulo-ocular reflexes in the rabbit. Prog Brain Res 88:485–497

    Article  PubMed  Google Scholar 

  • Wang Y, Jeng CH et al (1996) Electrophysiological and electrochemical responses of NMDA in the cerebellum: interactions with nonadrenergic pathway. Neuropharmacology 35(6):671–678

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse BD, Moises HC et al (1982) Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: mediation by beta adrenergic receptors. J Pharmacol Exp Ther 221(2):495–506

    PubMed  CAS  Google Scholar 

  • Waterhouse BD, Azizi SA et al (1990) Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Res 514(2):276–292

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse BD, Stowe ZN et al (1991) Cocaine actions in a central noradrenergic circuit: enhancement of cerebellar Purkinje neuron responses to iontophoretically applied GABA. Brain Res 546(2):297–309

    Article  PubMed  CAS  Google Scholar 

  • Watson M, McElligott JG (1983) 6-OHDA induced effects upon the acquisition and performance of specific locomotor tasks in rats. Pharmacol Biochem Behav 18(6):927–934

    Article  PubMed  CAS  Google Scholar 

  • Watson M, McElligott JG (1984) Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res 296(1):129–138

    Article  PubMed  CAS  Google Scholar 

  • West MO, Woodward DJ (1984) A technique for microiontophoretic study of single neurons in the freely moving rat. J Neurosci Methods 11(3):179–186

    Article  PubMed  CAS  Google Scholar 

  • Woodward DJ, Moises HC et al (1979) Modulatory actions of norepinephrine in the central nervous system. Fed Proc 38(7):2109–2116

    PubMed  CAS  Google Scholar 

  • Woodward DJ, Moises HC et al (1991) The cerebellar norepinephrine system: inhibition, modulation, and gating. Prog Brain Res 88:331–341

    Article  PubMed  CAS  Google Scholar 

  • Yeh HH, Woodward DJ (1983) Beta-1 adrenergic receptors mediate noradrenergic facilitation of purkinje cell responses to gamma-aminobutyric acid in cerebellum of rat. Neuropharmacology 22(5):629–639

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Chandler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Chandler, D.J., Nicholson, S.E., Zitnik, G., Waterhouse, B.D. (2013). Norepinephrine and Synaptic Transmission in the Cerebellum. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_37

Download citation

Publish with us

Policies and ethics