Skip to main content

Abstract

The cerebellar granule cells are the most numerous neurons of the brain. They are also among the most simple by emitting just four short unbranched dendrites innervated by the mossy fibers and a thin axon that branches into the parallel fibers. The granule cells are the only excitatory neurons of the cerebellum and receive inhibition uniquely through the Golgi cells. Since their early discovery by Camillo Golgi and Ramon y Cajal at the end of the nineteenth century, the granule cells have been the object of intensive investigation. The milestones have been the field recording of their activity in the 1960s, the discovery of their GABAergic inhibition in the 1970s and of their glutamatergic excitation in the 1980s, and the characterization of their membrane and synaptic mechanisms with patch-clamp techniques in the 1990s. Then in the last two decades, a series of careful electrophysiological and imaging investigations have unveiled major yet undisclosed functional properties of granule cells leading to a reevaluation of the function of the whole cerebellar cortex. The initial guess that granule cells simply retransmit incoming information (integrate and fire behavior) has been challenged by recent results showing that granule cells and their synapses are endowed with nonlinear transmission properties and are wired in a way allowing them to operate complex transformations of input signals in the spatiotemporal domain. Moreover, the prediction that the mossy fiber–granule cell synapse would lack long-term plasticity has been reversed by the discovery of complex forms of long-term potentiation and depression (LTP and LTD). These properties allow the granule neurons to provide a substantial contribution to the computational and learning properties of the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albus J. The theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  • Aller MI, Jones A, Merlo D, Paterlini M, Meyer AH, Amtmann U, Brickley S, Jolin HE, McKenzie AN, Monyer H, Farrant M, Wisden W. Cerebellar granule cell Cre recombinase expression. Genesis. 2003;36:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Altman J. Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer. J Comp Neurol. 1972a;145:465–513.

    Article  PubMed  CAS  Google Scholar 

  • Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol. 1972b;145:353–397.

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975;23:896–920.

    Article  PubMed  CAS  Google Scholar 

  • Andreescu CE, Prestori F, Brandalise F, D’Errico A, De Jeu MT, Rossi P, Botta L, Kohr G, Perin P, D’Angelo E, De Zeeuw CI. NR2A subunit of the N-methyl D-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning. Neuroscience. 2011;176:274–283.

    Article  PubMed  CAS  Google Scholar 

  • Arenz A, Silver RA, Schaefer AT, Margrie TW. The contribution of single synapses to sensory representation in vivo. Science. 2008;321:977–980.

    Article  PubMed  CAS  Google Scholar 

  • Arleo A, Nieus T, Bezzi M, D’Errico A, D’Angelo E, Coenen OJ. How synaptic release probability shapes neuronal transmission: information-theoretic analysis in a cerebellar granule cell. Neural Comput. 2010;22:2031–2058.

    Article  PubMed  Google Scholar 

  • Armano S, Rossi P, Taglietti V, D’Angelo E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J Neurosci. 2000;20:5208–5216.

    PubMed  CAS  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J Neurosci. 1999;19(8):2960–2973.

    PubMed  CAS  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature. 2001;409(6816):88–92. England.

    Article  PubMed  CAS  Google Scholar 

  • Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci. 2002;22(16):7132–7146. United States.

    PubMed  CAS  Google Scholar 

  • Cathala L, Brickley S, Cull-Candy S, Farrant M. Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J Neurosci. 2003;23(14):6074–6085. United States.

    PubMed  CAS  Google Scholar 

  • Chadderton P, Margrie TW, Hausser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428:856–860.

    Article  PubMed  CAS  Google Scholar 

  • Contestabile A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum. 2002;1:41–55.

    Article  PubMed  CAS  Google Scholar 

  • Contestabile A. Role of nitric oxide in cerebellar development and function: focus on granule neurons. Cerebellum 2012;11:50–61.

    Google Scholar 

  • Contestabile A, Fila T, Bartesaghi R, Ciani E. Cyclic AMP-mediated regulation of transcription factor Lot1 expression in cerebellar granule cells. J Biol Chem. 2005;280(39):33541–33551. United States.

    Article  PubMed  CAS  Google Scholar 

  • Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience. 2009;162(3):656–665. United States.

    Article  PubMed  CAS  Google Scholar 

  • Courtemanche R, Chabaud P, Lamarre Y. Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci. 2009;3:6.

    Article  PubMed  Google Scholar 

  • D’Angelo E. The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci. 2008;2:35–46.

    Article  PubMed  Google Scholar 

  • D’Angelo E. Rebuilding cerebellar network computations from cellular neurophysiology. Front Cell Neurosci. 2010;4:131.

    PubMed  Google Scholar 

  • D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32:30–40.

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo E, Rossi P, Garthwaite J. Dual-component NMDA receptor currents at a single central synapse. Nature. 1990;346:467–470.

    Article  PubMed  Google Scholar 

  • D’Angelo E, Rossi P, Taglietti V. Different proportions of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum. Neuroscience. 1993;53:121–130.

    Article  PubMed  Google Scholar 

  • D’Angelo E, Rossi P, De Filippi G, Magistretti J, Taglietti V. The relationship between synaptogenesis and expression of voltage-dependent currents in cerebellar granule cells in situ. J Physiol Paris. 1994;88(3f):197–207. France.

    Article  PubMed  Google Scholar 

  • D’Angelo E, De Filippi G, Rossi P, Taglietti V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol. 1995;484(Pt 2):397–413.

    PubMed  Google Scholar 

  • D’Angelo E, De Filippi G, Rossi P, Taglietti V. Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ. J Neurophysiol. 1997;78:1631–1642.

    PubMed  Google Scholar 

  • D’Angelo E, De Filippi G, Rossi P, Taglietti V. Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J Neurophysiol. 1998;80:493–503.

    PubMed  Google Scholar 

  • D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81:277–287.

    PubMed  Google Scholar 

  • D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k + −dependent mechanism. J Neurosci. 2001;21:759–770.

    PubMed  Google Scholar 

  • D’Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, Sola E. Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res. 2005;148:69–80. Netherlands.

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo E, Koekkoek SK, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience. 2009;162:805–815.

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, Cesana E, Gandolfi D, Congi L. The cerebellar network: from structure to function and dynamics. Brain Res Rev. 2011;66(1–2):5–15.

    Article  PubMed  Google Scholar 

  • Dean P, Porrill J, Ekerot CF, Jorntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11:30–43.

    Article  PubMed  CAS  Google Scholar 

  • D’Errico A, Prestori F, D’Angelo E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol. 2009;587:5843–5857.

    Article  PubMed  CAS  Google Scholar 

  • Dittman JS, Kreitzer AC, Regehr WG. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci. 2000;20:1374–1385.

    PubMed  CAS  Google Scholar 

  • Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E. Axonal Na + channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol. 2009;101:519–532. United States.

    Article  PubMed  CAS  Google Scholar 

  • Dover K, Solinas S, D’Angelo E, Goldfarb M. Long-term inactivation particle for voltage-gated sodium channels. J Physiol. 2010;588:3695–3711. England.

    Article  PubMed  CAS  Google Scholar 

  • Dugue GP, Brunel N, Hakim V, Schwartz E, Chat M, Levesque M, Courtemanche R, Lena C, Dieudonne S. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron. 2009;61:126–139.

    Article  PubMed  CAS  Google Scholar 

  • Eccles J, Llinàs R, Sasaki K. Golgi Cell Inhibition in the Cerebellar Cortex. Nature. 1964;204:1265–1266.

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K. The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res. 1966;1:82–101.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J. The cerebellum as a neural machine. Berlin/Heidelberg/New York: Springer; 1967.

    Google Scholar 

  • Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 2005;6:215–229.

    Article  PubMed  CAS  Google Scholar 

  • Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45:195–206.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani F, Midtgaard J, Knopfel T. Synaptic integration in a model of cerebellar granule cells. J Neurophysiol. 1994;72:999–1009.

    PubMed  CAS  Google Scholar 

  • Gall D, Roussel C, Susa I, D’Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schiffmann SN. Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci. 2003;23:9320–9327.

    PubMed  CAS  Google Scholar 

  • Gall D, Prestori F, Sola E, D’Errico A, Roussel C, Forti L, Rossi P, D’Angelo E. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci. 2005;25:4813–4822.

    Article  PubMed  CAS  Google Scholar 

  • Galliano E, Mazzarello P, D’Angelo E. Discovery and rediscoveries of golgi cells. J Physiol. 2010;588:3639–3655.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Brodbelt AR. Synaptic activation of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors in the mossy fibre pathway in adult and immature rat cerebellar slices. Neuroscience. 1989;29:401–412.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Brodbelt AR. Glutamate as the principal mossy fibre transmitter in rat cerebellum: pharmacological evidence. Eur J Neurosci. 1990;2:177–180.

    Article  PubMed  Google Scholar 

  • Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, Giza J, Tchetchik D, Kelley K, Vega A, Matthews G, Rossi P, Ornitz DM, D’Angelo E. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron. 2007;55:449–463.

    Article  PubMed  CAS  Google Scholar 

  • Golgi C. Sulla fine anatomia del cervelletto umano. Archivio Italiano per le Malattie Nervose. 1874;2:90–107.

    Google Scholar 

  • Golgi C. Sulla fina anatomia degli organi centrali del sistema nervoso. Reggio-Emilia: S. Calderini e Figlio; 1885.

    Google Scholar 

  • Golgi C. The neuron doctrine. Theory and facts. In: Nobel lecture, editor. NLPoM 1901–1921. Amsterdam: Elsevier; 1967.

    Google Scholar 

  • Hamori J, Somogyi J. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol. 1983;220:365–377.

    Article  PubMed  CAS  Google Scholar 

  • Hamori J, Szentagothai J. Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscope study. Exp Brain Res. 1966;2:35–48.

    Article  PubMed  CAS  Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4:467–475.

    PubMed  CAS  Google Scholar 

  • Hartmann MJ, Bower JM. Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol. 1998;80:1598–1604.

    PubMed  CAS  Google Scholar 

  • Hartmann MJ, Bower JM. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci. 2001;21:3549–3563.

    PubMed  CAS  Google Scholar 

  • Harvey RJ, Napper RM. Quantitative studies on the mammalian cerebellum. Prog Neurobiol. 1991;36:437–463.

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA, Hobart NJ, Summers D (1998) Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol 154: 336–352. Academic Press, United States

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Watanabe D, Kawaguchi SY, Pastan I, Nakanishi S. Roles of inhibitory interneurons in the cerebellar cortex. Ann N Y Acad Sci. 2002;978:405–412.

    Article  PubMed  CAS  Google Scholar 

  • Howarth C, Peppiatt-Wildman CM, Attwell D. The energy use associated with neural computation in the cerebellum. J Cereb Blood Flow Metab. 2010;30(2):403–414. United States.

    Article  PubMed  Google Scholar 

  • Ito M. The cerebellum and neural control. New York: Raven; 1984.

    Google Scholar 

  • Jakab RL, Hamori J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol (Berl). 1988;179:81–88.

    Article  CAS  Google Scholar 

  • Jorntell H, Ekerot CF. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci. 2006;26:11786–11797.

    Article  PubMed  CAS  Google Scholar 

  • Kaemmerer WF, Low WC (1999) Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol 158(2):301–311. Academic Press, United States

    Article  PubMed  CAS  Google Scholar 

  • Kase M, Miller DC, Noda H. Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol. 1980;300:539–555.

    PubMed  CAS  Google Scholar 

  • Kistler WM, De Zeeuw CI. Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum. 2003;2:44–54.

    Article  PubMed  Google Scholar 

  • Komuro H, Rakic P. Selective role of N-type calcium channels in neuronal migration. Science. 1992;257:806–809.

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P. Modulation of neuronal migration by NMDA receptors. Science. 1993;260:95–97.

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P. Dynamics of granule cell migration: a confocal microscopic study in acute cerebellar slice preparations. J Neurosci. 1995;15:1110–1120.

    PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P. Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci. 1998a;18:1478–1490.

    PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P. Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol. 1998b;37:110–130. United States.

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Yacubova E, Rakic P. Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci. 2001;21:527–540. United States.

    PubMed  CAS  Google Scholar 

  • Llinas R. Neurobiology of cerebellar evolution and development. Chicago: American Medical Association; 1969.

    Google Scholar 

  • Lu H, Hartmann MJ, Bower JM. Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer. J Neurophysiol. 2005;94:1849–1860.

    Article  PubMed  Google Scholar 

  • Maex R, De Schutter E. Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol. 1998;80:2521–2537.

    PubMed  CAS  Google Scholar 

  • Maffei A, Prestori F, Rossi P, Taglietti V, D’Angelo E. Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. J Neurophysiol. 2002;88:627–638.

    PubMed  Google Scholar 

  • Maffei A, Prestori F, Shibuki K, Rossi P, Taglietti V, D’Angelo E. NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP. J Neurophysiol. 2003;90:2478–2483.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti J, Castelli L, Forti L, D’Angelo E. Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. J Physiol Lond. 2006;573:83–106.

    Article  PubMed  CAS  Google Scholar 

  • Mapelli J, D’Angelo E. The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J Neurosci. 2007;27:1285–1296.

    Article  PubMed  CAS  Google Scholar 

  • Mapelli L, Rossi P, Nieus T, D’Angelo E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol. 2009;101:3089–3099.

    Article  PubMed  CAS  Google Scholar 

  • Mapelli J, Gandolfi D, D’Angelo E. Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. J Neurophysiol. 2010a;103:250–261.

    Article  PubMed  Google Scholar 

  • Mapelli J, Gandolfi D, D’Angelo E. High-pass filtering and dynamic gain regulation enhance vertical bursts transmission along the mossy fiber pathway of cerebellum. Front Cell Neurosci. 2010b;4:14.

    PubMed  Google Scholar 

  • Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–470.

    PubMed  CAS  Google Scholar 

  • Medina JF, Mauk MD. Computer simulation of cerebellar information processing. Nat Neurosci. 2000;3(Suppl):1205–1211.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SJ, Silver RA. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J Neurosci. 2000a;20:8651–8658. United States.

    PubMed  CAS  Google Scholar 

  • Mitchell SJ, Silver RA. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature. 2000b;404:498–502.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SJ, Silver RA. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron. 2003;38:433–445.

    Article  PubMed  CAS  Google Scholar 

  • Monti B, Contestabile A. Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur J Neurosci. 2000;12:3117–3123. France.

    Article  PubMed  CAS  Google Scholar 

  • Monti B, Marri L, Contestabile A. NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development. Eur J Neurosci. 2002;16:1490–1498. France.

    Article  PubMed  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–540. United States.

    Article  PubMed  CAS  Google Scholar 

  • Morissette J, Bower JM. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp Brain Res. 1996;109:240–250.

    Article  PubMed  CAS  Google Scholar 

  • Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D’Angelo E. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol. 2006;95:686–699.

    Article  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Somogyi P. Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res. 1988;450:342–353. Netherlands.

    Article  PubMed  CAS  Google Scholar 

  • Palay SL, Chan-Palay V. Cerebellar cortex: cytology and organization. New York: Springer; 1974.

    Book  Google Scholar 

  • Park SH, Becker-Catania S, Gatti RA, Crandall BF, Emelin JK, Vinters HV. Congenital olivopontocerebellar atrophy: report of two siblings with paleo- and neocerebellar atrophy. Acta Neuropathol. 1998;96:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Castroviejo I, Gutierrez M, Morales C, Gonzalez-Mediero I, Martinez-Bermejo A, Pascual-Pascual SI. Primary degeneration of the granular layer of the cerebellum. A study of 14 patients and review of the literature. Neuropediatrics. 1994;25:183–190.

    Article  PubMed  CAS  Google Scholar 

  • Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol. 1997;78:3502–3507.

    PubMed  CAS  Google Scholar 

  • Prestori F, Rossi P, Bearzatto B, Laine J, Necchi D, Diwakar S, Schiffmann SN, Axelrad H, D’Angelo E. Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J Neurosci. 2008a;28:7091–7103.

    Article  PubMed  CAS  Google Scholar 

  • Prestori F, Rossi P, Bearzatto B, Lainé J, Necchi D, Diwakar S, Schiffmann SN, Axelrad H, D’Angelo E. Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J Neurosci. 2008b;28:7091–7103.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S. Sur l’origine et la direction des prolongations nerveuses de la couche molèculaire du cervelet. Internat Mschr Anat Physiol. 1889;7:12–31.

    Google Scholar 

  • Ramon y Cajal S. Textura del sistema nervioso del hombre y de los vertebrado: estudios sobre el plan estructural y composición histológical de los centros nerviosos adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimientos, vol. 2, 3. Madrid: Moya; 1904.

    Google Scholar 

  • Ramón y Cajal S (1909) Histologie du sistéme nerveux de l’homme et des vertebras (trans: Azoulay L), vol 1. Maloine, Paris

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du sistéme nerveux de l’homme et des vertebras (trans:, Azoulay L), vol 2. Maloine, Paris

    Google Scholar 

  • Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Hausser M. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature. 2007;450:1245–1248.

    Article  PubMed  CAS  Google Scholar 

  • Roggeri L, Rivieccio B, Rossi P, D'Angelo E. Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J Neurosci. 2008;28:6354–6359.

    Article  PubMed  CAS  Google Scholar 

  • Ros H, Sachdev RN, Yu Y, Sestan N, McCormick DA. Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci. 2009;29:10309–10320.

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Hamann M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry. Neuron. 1998;20:783–795. United States.

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, D’Angelo E, Magistretti J, Toselli M, Taglietti V. Age-dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ. Pflugers Arch. 1994;429:107–116.

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, De Filippi G, Armano S, Taglietti V, D’Angelo E. The weaver mutation causes a loss of inward rectifier current regulation in premigratory granule cells of the mouse cerebellum. J Neurosci. 1998;18:3537–3547.

    PubMed  CAS  Google Scholar 

  • Rossi P, Sola E, Taglietti V, Borchardt T, Steigerwald F, Utvik JK, Ottersen OP, Kohr G, D’Angelo E. NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse. J Neurosci. 2002;22:9687–9697.

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Hamann M, Attwell D. Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol. 2003;548:97–110.

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Mapelli L, Roggeri L, Gall D, de Kerchove d’Exaerde A, Schiffmann SN, Taglietti V, D’Angelo E. Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors. Eur J Neurosci. 2006;24:419–432. France.

    Article  PubMed  Google Scholar 

  • Sargent PB, Saviane C, Nielsen TA, DiGregorio DA, Silver RA. Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J Neurosci. 2005;25:8173–8187. United States.

    Article  PubMed  CAS  Google Scholar 

  • Saviane C, Silver RA. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature. 2006;439:983–987.

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Doya K, Lay F. Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience. 2001;103:35–50.

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev. 2004;44:103–116.

    Article  PubMed  Google Scholar 

  • Shambes GM, Gibson JM, Welker W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol. 1978;15:94–140.

    Article  PubMed  CAS  Google Scholar 

  • Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, Gotz J, Rulicke T, Flechsig E, Cozzio A, von Mering C, Hangartner C, Aguzzi A, Weissmann C. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell. 1998;93:203–214. United States.

    Article  PubMed  CAS  Google Scholar 

  • Shumway C, Morissette J, Bower JM. Mechanisms underlying reorganization of fractured tactile cerebellar maps after deafferentation in developing and adult rats. J Neurophysiol. 2005;94:2630–2643. United States.

    Article  PubMed  Google Scholar 

  • Silver RA, Traynelis SF, Cull-Candy SG. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature. 1992;355:163–166.

    Article  PubMed  CAS  Google Scholar 

  • Silver RA, Cull-Candy SG, Takahashi T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J Physiol. 1996;494(Pt 1):231–250.

    PubMed  CAS  Google Scholar 

  • Sola E, Prestori F, Rossi P, Taglietti V, D’Angelo E. Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J Physiol. 2004;557:843–861.

    Article  PubMed  CAS  Google Scholar 

  • Solinas S, Nieus T, D’Angelo E. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci. 2010;4:12.

    PubMed  Google Scholar 

  • Somogyi P, Halasy K, Somogyi J, Storm-Mathisen J, Ottersen OP. Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience. 1986;19:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C. Cerebellar synaptogenesis: what we can learn from mutant mice. J Exp Biol. 1990;153:225–249.

    PubMed  CAS  Google Scholar 

  • Soto D, Coombs ID, Kelly L, Farrant M, Cull-Candy SG. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat Neurosci. 2007;10:1260–1267. United States.

    Article  PubMed  CAS  Google Scholar 

  • Tagliati M, Simpson D, Morgello S, Clifford D, Schwartz RL, Berger JR. Cerebellar degeneration associated with human immunodeficiency virus infection. Neurology. 1998;50:244–251.

    Article  PubMed  CAS  Google Scholar 

  • van Kan PL, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:74–94.

    PubMed  Google Scholar 

  • Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA. Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 2010;67:435–451.

    Article  PubMed  CAS  Google Scholar 

  • Williams IM, Carletti B, Leto K, Magrassi L, Rossi F. Cerebellar granule cells transplanted in vivo can follow physiological and unusual migratory routes to integrate into the recipient cortex. Neurobiol Dis. 2008;30:139–149. United States.

    Article  PubMed  Google Scholar 

  • Wisniewski HM, Weigel J. Migration of perivascular cells into the neuropil and their involvement in beta-amyloid plaque formation. Acta Neuropathol. 1993;85:586–595.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union (CEREBNET FP7-ITN238686, REALNET FP7-ICT270434) to ED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio D’Angelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

D’Angelo, E. (2013). Cerebellar Granule Cell. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_31

Download citation

Publish with us

Policies and ethics