Skip to main content

Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”

  • Reference work entry
  • First Online:

Abstract

This chapter provides an overview of different hierarchical levels of molecular dynamics (MD) simulations spanning a wide range of time and length scales – from first principles approaches via classical atomistic methods to coarse graining techniques. The theoretical background of the most widely used methods and algorithms is briefly reviewed and practical instructions are given on the choice of input parameters for an actual computer simulation. In addition, important postprocessing procedures such as data analysis and visualization are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ABINIT. (2010). http://www.abinit.org. Accessed 02 July 2011.

  • Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids. Oxford: Clarendon Press.

    Google Scholar 

  • Amara, P., Field, M. J., Alhambra, C., & Gao, J. (2000). The generalized hybrid orbital method for combined quantum mechanical/molecular mechanical calculations: Formulation and tests of the analytical derivatives. Theoretical Chemistry Accounts, 104, 336.

    CAS  Google Scholar 

  • Anderson, J. A., Lorenz, C. D., & Travesset, A. (2008). General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics, 227, 5342.

    Google Scholar 

  • Aqvist, J., & Warshel, A. (1993). Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chemical Reviews, 93, 2523.

    Google Scholar 

  • Artacho, E., Anglada, E., Dieguez, O., Gale, J. D., Garcia, A., Junquera, J., Martin, R. M., Ordejón, P., Pruneda, J. M., Sánchez-Portal, D., & Soler, J. M. (2008). The SIESTA method; developments and applicability. Journal of Physics: Condensed Matter, 20, 064208.

    Google Scholar 

  • Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. Philadelphia: Saunders College Publishing.

    Google Scholar 

  • Assfeld, X., & Rivail, J. L. (1996). Quantum chemical computations on parts of large molecules: The ab initio local self consistent field method. Chemical Physics Letters, 263, 100.

    CAS  Google Scholar 

  • Assfeld, X., Ferré, N., & Rivail, J. L. (1998). In J. Gao & M. A. Thompson (Eds.), Combined quantum mechanical and molecular mechanical methods, ACS Symp. Ser. (Vol. 712, p. 234). Washington: American Chemical Society.

    Google Scholar 

  • Aulbur, W. G., Jonsson, L., & Wilkins, J. W. (2000). Quasiparticle calculations in solids. Solid State Physics, 54, 1.

    CAS  Google Scholar 

  • Bachelet, G. B., Hamann, D. R., Schlüter, M. (1982). Pseudopotentials that work: From H to Pu. Physical Review B, 26, 4199.

    CAS  Google Scholar 

  • Balint-Kurti, G. G. (2008). Time-dependent and time-independent wavepacket approaches to reactive scattering and photodissociation dynamics. International Reviews in Physical Chemistry, 27, 507.

    CAS  Google Scholar 

  • Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 46, 2727.

    CAS  Google Scholar 

  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098.

    CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648.

    Google Scholar 

  • Bereau, T., & Deserno, M. (2009). Generic coarse-grained model for protein folding and aggregation. Journal of Chemical Physics, 130, 235106.

    Google Scholar 

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Nola, A. D., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81, 3684.

    CAS  Google Scholar 

  • Betancourt, M. R., & Omovie, S. J. (2009). Pairwise energies for polypeptide coarse-grained models derived from atomic force fields. Journal of Chemical Physics, 130, 195103.

    Google Scholar 

  • Bhandarkar, M., Bhatele, A., Bohm, E., Brunner, R., Buelens, F., Chipot, C., Dalke, A., Dixit, S., Fiorin, G., Freddolino, P., Grayson, P., Gullingsrud, J., Gursoy, A., Hardy, D., Harrison, C., Hénin, J., Humphrey, W., Hurwitz, D., Krawetz, N., Kumar, S., Kunzman, D., Lee, C., Mei, C., Nelson, M., Phillips, J., Sarood, O., Shinozaki, A., Zheng, G., & Zhu, F. (2009). NAMD User’s Guide. Theoretical Biophysics Group, University of Illinois and Beckman Institute. http://www.ks.uiuc.edu/Research/namd/. Accessed 02 July 2011.

  • Blochl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50, 17953.

    Google Scholar 

  • Blochl, P. E., Forst, C. J., & Schimpl, J. (2003). Projector augmented wave method: Ab initio molecular dynamics with full wave functions. Bulletin of Material Science, 26, 33.

    CAS  Google Scholar 

  • Bockstedte, M., Kley, A., Neugebauer, J., & Scheffler, M. (1997). Density-functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamics. Computer Physics Communications, 107, 187.

    CAS  Google Scholar 

  • Boeck, S. (2009). Development and application of the S/PHI/nX library. Saarbrücken: Südwestdeutscher Verlag für Hochschulschriften.

    Google Scholar 

  • Bowler, D. R., Choudhury, R., Gillan, M. J., & Miyazaki, T. (2006). Recent progress with large-scale ab initio calculations: The CONQUEST code. Physica Status Solidi B, 243, 989.

    CAS  Google Scholar 

  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553.

    CAS  Google Scholar 

  • Bredow, T., & Jug, K. (2005). Theory and range of modern semiempirical molecular orbital methods. Theoretical Chemistry Accounts, 113, 1.

    CAS  Google Scholar 

  • Brooks, B. R., Brooks, C. L., III, Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux,B.,Won,Y.,Archontis,G.,Bartels,C.,Boresch,S.,Caflisch,A.,Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X., Yang, W., York, D. M., & Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30, 1545.

    CAS  Google Scholar 

  • Buckingham, R. A. (1938). The classical equation of state of gaseous helium, neon and argon. Proceedings of the Royal Society of London A, 168, 264.

    CAS  Google Scholar 

  • Bulo, R. E., Ensing, B., Sikkema, J., & Visscher, L. (2009). Toward a practical method for adaptive QM/MM simulations. Journal of Chemical Theory and Computation, 5, 2212.

    CAS  Google Scholar 

  • Car, R., & Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, 55, 2471.

    CAS  Google Scholar 

  • Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Jr., K. M. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668.

    Google Scholar 

  • Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R. C., Zhang, W., Merz, K. M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossvry, I., Wong, F. K., Paesani, F., Vanicek, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Yang, L., Tan, C., Mongan, J., Hornak, V., Cui, G., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., & Kollman, P. (2008). AMBER 10. San Francisco: University of California. http://ambermd.org/. Accessed 02 July 2011.

  • CASTEP. (2009). http://www.tcm.phy.cam.ac.uk/castep/. Accessed 02 July 2011.

  • CCDC. (2010). Cambridge crystallographic data centre. http://www.ccdc.cam.ac.uk. Accessed 02 July 2011.

  • Chadi, D. J., & Cohen, M. L. (1973). Special points in the brillouin zone. Physical Review B, 8, 5747.

    Google Scholar 

  • CHARMM. (2009). http://www.charmm.org/. Accessed 02 July 2011.

  • Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie, 220, 567.

    CAS  Google Scholar 

  • CONQUEST. (2009). http://hamlin.phys.ucl.ac.uk/NewCQWeb/bin/view. Accessed 02 July 2011.

  • Cooke, I. R., Kremer, K., & Deserno, M. (2005). Tunable generic model for fluid bilayer membranes. Physical Review E, 72, 011506.

    Google Scholar 

  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Jr., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of American Chemical Society, 117, 5179.

    CAS  Google Scholar 

  • CP-PAW. (2006). http://orion.pt.tu-clausthal.de/paw/. Accessed 02 July 2011.

  • Császár, P., & Pulay, P. (1984). Geometry optimization by direct inversion in the iterative subspace. Journal of Molecular Structure, 114, 31.

    Google Scholar 

  • DACAPO. (2006). https://wiki.fysik.dtu.dk/dacapo. Accessed 02 July 2011.

  • Daw, M. S., & Baskes, M. I. (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 50, 1285.

    CAS  Google Scholar 

  • Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29, 6443.

    CAS  Google Scholar 

  • Day, P. N., Jensen, J. H., Gordon, M. S., Webb, S. P., Stevens, W. J., Krauss, M., Garmer, D., Basch, H., & Cohen, D. (1996). An effective fragment method for modeling solvent effects in quantum mechanical calculations. Journal of Chemical Physics, 105, 1968.

    CAS  Google Scholar 

  • Dirac, P. A. M. (1930). Note on exchange phenomena in the Thomas atom. Proceedings of the Cambridge Philosophical Society, 26, 376.

    CAS  Google Scholar 

  • Doltsinis, N. L. (2006). In J. Grotendorst, S. Blügel, & D. Marx (Eds.), Computational nanoscience: Do it yourself! Jülich: NIC. http://www2.fz-juelich.de/nic-series/volume31/doltsinis3.pdf. Accessed 02 July 2011.

  • Doltsinis, N. L., & Marx, D. (2002 a). Nonadiabatic car-parrinello molecular dynamics. Physical Review Letters, 88, 166402.

    Google Scholar 

  • Doltsinis, N. L., & Marx, D. (2002 b). First-principles molecular dynamics involving excited states and nonadiabatic transitions. Journal of Theoretical and Computational Chemistry, 1, 319–349.

    Google Scholar 

  • Dreizler, R. M., & Gross, E. K. U. (1990). Density–functional theory. Berlin: Springer.

    Google Scholar 

  • Elezgaray, J., & Laguerre, M. (2006). A systematic method to derive force fields for coarse-grained simulations of phospholipids. Computer Physics Communications, 175, 264.

    CAS  Google Scholar 

  • Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., & Seifert, G. (1998). Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review B, 58, 7260.

    CAS  Google Scholar 

  • Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annals of Physics, 369, 253.

    Google Scholar 

  • Ferré, N., Assfeld, X., & Rivail, J. L. (2002). Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. Journal of Computational Chemistry, 23, 610.

    Google Scholar 

  • FHI98md. (2002). http://www.fhi-berlin.mpg.de/th/fhimd/. Accessed 02 July 2011.

  • Finnis, M. W., & Sinclair, J. E. (1984). A simple empirical n-body potential for transition metals. Philosophical Magazine A, 29, 6443.

    Google Scholar 

  • Fornili, A., Sironi, M., & Raimondi, M. (2003). Determination of extremely localized molecular orbitals and their application to quantum mechanics/molecular mechanics methods and to the study of intramolecular hydrogen bonding. Journal of Molecular Structure (THEOCHEM), 632, 157.

    Google Scholar 

  • Fornili, A., Loos, P.-F., Sironi, M., & Assfeld, X. (2006 a). Frozen core orbitals as an alternative to specific frontier bond potential in hybrid Quantum Mechanics/Molecular Mechanics methods. Chemical Physics Letters, 427, 236.

    Google Scholar 

  • Fornili, A., Moreau, Y., Sironi, M., & Assfeld, X. (2006 b). On the suitability of strictly localized orbitals for hybrid QM/MM calculations. Journal of Computational Chemistry, 27, 515.

    Google Scholar 

  • Free Molecular Visualization Software. (2008). http://www.umass.edu/microbio/rasmol/othersof.htm. Accessed 02 July 2011.

  • Fumi, F. G., & Tosi, M. P. (1964). Ionic sizes and born repulsive parameters in the NaCl-type alkali halides I : The Huggins-Mayer and Pauling forms. Journal of Physics and Chemitry of Solids, 25, 31.

    CAS  Google Scholar 

  • Gao, J., Amara, P., Alhambra, C., & Field, M. J. (1998). A Generalized Hybrid Orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. Journal of Physics Chemistry A, 102, 4714.

    CAS  Google Scholar 

  • Garcia-Viloca, M., & Gao, J. (2004). Generalized hybrid orbital for the treatment of boundary atoms in combined quantum mechanical and molecular mechanical calculations using the semiempirical parameterized model 3 method. Theoretical Chemistry Accounts, 111, 280.

    CAS  Google Scholar 

  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502.

    Google Scholar 

  • Goedecker, S., Teter, M., & Hutter, J. (1996). Separable dual-space Gaussian pseudopotentials. Physical Review B, 54, 1703.

    CAS  Google Scholar 

  • Goetz, R., Compper, G., & Lipowsky, R. (1999). Mobility and elasticity of self-assembled membranes. Physical Review Letters, 82, 221.

    CAS  Google Scholar 

  • Gordon, M. S., Freitag, M. A., Bandyopadhyay, P., Jensen, J. H., Kairys, V., & Stevens, W. J. (2001). The effective fragment potential method: A QM-based MM approach to modeling environmental effects in chemistry. The Journal of Physical Chemistry A, 105, 105.

    Google Scholar 

  • Grigorenko, B. L., Nemukhin, A. V., Topol, I. A., & Burt, S. K. (2002). Modeling of biomolecular systems with the quantum mechanical and molecular mechanical method based on the effective fragment potential technique: Proposal of flexible fragments. The Journal of Physical Chemistry A, 106, 10663.

    CAS  Google Scholar 

  • GROMOS. (2007). BIOMOS b.v, laboratory of physical chemistry ETH Hnggerberg, HCI. http://www.gromos.net/. Accessed 02 July 2011.

  • Hamann, D. R., Schlüter, M., Chiang, C. (1979). Norm-conserving pseudopotentials. Physical Review Letters, 43, 1494.

    CAS  Google Scholar 

  • Hartwigsen, C., Goedecker, S., & Hutter, J. (1998). Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B, 58, 3641.

    CAS  Google Scholar 

  • Heyden, A., Lin, H., & Truhlar, D. G. (2007). Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. The Journal of Physical Chemistry B, 111, 2231.

    CAS  Google Scholar 

  • Hockney, R. W. (1970). The potential calculation and some applications. Methods in Computational Physics, 9, 135.

    Google Scholar 

  • Hockney, R., & Eastwood, J. (1981). Computer simulation using particles. New York: McGraw-Hill.

    Google Scholar 

  • Hofer, T. S., Pribil, A. B., Randolf, B. R., & Rode, B. M. (2005). Structure and dynamics of solvated Sn(II) in aqueous solution: An ab initio QM/MM MD approach. Journal of American Chemical Society, 127, 14231.

    CAS  Google Scholar 

  • HOOMD. (2009). http://codeblue.umich.edu/hoomd-blue. Accessed 02 July 2011.

  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31, 1695.

    Google Scholar 

  • Hoover, W. G. (1986). Constant-pressure equations of motion. Physical Review A, 34, 2499.

    Google Scholar 

  • Hutter, J., Lüthi, H. P., & Parrinello, M. (1994). Electronic structure optimization in plane-wave-based density functional calculations by direct inversion in the iterative subspace. Computational Materials Science, 2, 244.

    CAS  Google Scholar 

  • Hutter, J., Kohlmeyer, A., Mundy, C. J., Mohamed, F., Schiffmann, F., Tabacchi, G., Forbert, H., Bethune, I., Kuo, W., Krack, M., Iannuzzi, M., Guidon, M., McGrath, M., Kuehne, T. D., Laino, T., Borstnik, U., VandeVondele, J., & Weber, V. (2009). CP2K – a general program to perform molecular dynamics simulations. http://cp2k.berlios.de. Accessed 02 July 2011.

  • ICSD. (2009). Inorganic crystal structure database. http://www.fiz-karlsruhe.de/icsd.html. Acces- sed 02 July 2011.

  • Izvekov, S., & Voth, G. A. (2005). A multiscale coarse-graining method for biomolecular systems. The Journal of Physical Chemistry B, 109, 2469.

    CAS  Google Scholar 

  • Izvekov, S., & Voth, G. A. (2006). Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers. Journal of Chemical Theory and Computation, 2, 637.

    CAS  Google Scholar 

  • Jensen, F. (2007). Introduction to computational chemistry. Chichester: Wiley.

    Google Scholar 

  • Jensen, J. H., Day, P. N., Gordon, M. S., Basch, H., Cohen, D., Garmer, D. R., Krauss, M., & Stevens, W. J. (1994). In D. A. Smith (Ed.), Modeling the hydrogen bond, ACS Symp. Ser. (Vol. 569, p. 139). Washington, DC: American Chemical Society.

    Google Scholar 

  • Jørgensen, W. L., Madura, J. D., & Swenson, C. J. (1984). Optimized intermolecular potential functions for liquid hydrocarbons. Journal of American Chemical Society, 106, 6638.

    Google Scholar 

  • Jung, J., Choi, C. H., Sugita, Y., & Ten-no, S. (2007). New implementation of a combined quantum mechanical and molecular mechanical method using modified generalized hybrid orbitals. Journal of Chemical Physics, 127, 204102.

    Google Scholar 

  • Kairys, V., & Jensen, J. H. (2000). QM/MM boundaries across covalent bonds: A frozen localized molecular orbital-based approach for the effective fragment potential method. The Journal of Physical Chemistry A, 104, 6656.

    CAS  Google Scholar 

  • Kantorovich, L. (2008). Generalized Langevin equation for solids. I. Rigorous derivation and main properties. Physical Review B, 78, 094304.

    Google Scholar 

  • Kantorovich, L., & Rompotis, N. (2008). Generalized Langevin equation for solids. II. Stochastic boundary conditions for nonequilibrium molecular dynamics simulations. Physical Review B, 78, 094305.

    Google Scholar 

  • Kendall, R. A., Apra, E., Bernholdt, D. E., Bylaska, E. J., Dupuis, M., Fann, G. I., Harrison, R. J., Ju, J., Nichols, J. A., Nieplocha, J., Straatsma, T. P., Windus, T. L., & Wong, A. T. (2000). High performance computational chemistry: An overview of NWChem a distributed parallel application. Computer Physics Communications, 128, 260.

    CAS  Google Scholar 

  • Kerdcharoen, T., Liedl, K. R., & Rode, B. M. (1996). A QM/MM simulation method applied to the solution of Li+ in liquid ammonia. Chemical Physics, 211, 313.

    CAS  Google Scholar 

  • Kerdcharoen, T., & Morokuma, K. (2002). ONIOM-XS: An extension of the ONIOM method for molecular simulation in condensed phase. Chemical Physics Letters, 355, 257.

    CAS  Google Scholar 

  • Kerker, G. (1980). Non-singular atomic pseudopotentials for solid state applications. The Journal of Physical Chemistry C, 13, L189.

    CAS  Google Scholar 

  • Khalid, S., Bond, P. J., Holyoake, J., Hawtin, R. W., & Sansom, M. S. P. (2008). DNA and lipid bilayers: Self-assembly and insertion. Journal of the Royal Society Interface, 5, S241.

    CAS  Google Scholar 

  • Kleinman, L., & Bylander, D. M. (1982). Physical Review Letters, 48, 1425.

    CAS  Google Scholar 

  • Kołos, W. (1970). Adiabatic approximation and its accuracy. Advances in Quantum Chemistry, 5, 99.

    Google Scholar 

  • Kremer, K., & Grest, G. (1990). Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. Journal of Chemical Physics, 92, 5057.

    CAS  Google Scholar 

  • Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.

    CAS  Google Scholar 

  • Kuo, I.-F. W., Mundy, C. J., McGrath, M. J., Siepmann, J. I., VandeVondele, J., Sprik, M., Hutter, J., Chen, B., Klein, M. L., Mohamed, F., Krack, M., & Parrinello, M. (2004). Liquid water from first principles: Investigation of different sampling approaches. The Journal of Physical Chemistry B, 108, 12990.

    CAS  Google Scholar 

  • Kutzelnigg, W. (1997). The adiabatic approximation I. The physical background of the Born-Handy ansatz. Molecular Physics, 90, 909.

    Google Scholar 

  • Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B, 47, 10142.

    CAS  Google Scholar 

  • Laio, A., VandeVondele, J., & Rothlisberger, U. (2002). A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics sim- ulations. Journal of Chemical Physics, 116, 6941.

    CAS  Google Scholar 

  • LAMMPS. (2010). http://lammps.sandia.gov/. Accessed 02 July 2011.

  • Lee, C., Yang, W., & Parr, R. C. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785.

    CAS  Google Scholar 

  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306.

    Google Scholar 

  • Loos, P.-F., & Assfeld, X. (2007). Self-consistent strictly localized orbitals. Journal of Chemical Theory and Computation, 3, 1047.

    CAS  Google Scholar 

  • Luty, B. A., Davis, M. E., Tironi, I. G., & van Gunsteren, W. F. (1994). A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Molecular Simulation, 14, 11.

    CAS  Google Scholar 

  • Luty, B. A., Tironi, I. G., & van Gunsteren, W. F. (1995). Lattice-sum methods for calculating electrostatic interactions in molecular simulations. Journal of Chemical Physics, 103, 3014.

    CAS  Google Scholar 

  • Lyubartsev, A. P. (2005). Multiscale modeling of lipids and lipid bilayers. European Biophysics Journal, 35, 53.

    CAS  Google Scholar 

  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodham, B., Reihar, W. E., III, Raux, B., Schlenjrich, M., Smith, J. C., Store, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., & Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102, 3586.

    CAS  Google Scholar 

  • Marrink, S. J., de Vries, A. H., & Mark, A. E. (2004). Coarse grained model for semiquantitative lipid simulations. The Journal of Physical Chemistry B, 108, 750.

    CAS  Google Scholar 

  • Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & de Vries, A. H. (2007). The MARTINI force field: Coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B, 111, 7812.

    CAS  Google Scholar 

  • Marx, D., & Hutter, J. (2000). Ab initio molecular dynamics: Theory and implementation. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry. Jülich: NIC. http://www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf. Accessed 02 July 2011.

  • Marx, D., & Hutter, J. (2009). Ab initio molecular dynamics: Basic theory and advanced methods. Cambridge: Cambridge University Press.

    Google Scholar 

  • McQuarrie, D. A. (1992). Statistical mechanics. London: Academic.

    Google Scholar 

  • Melchionna, S., Ciccotti, G., & Holian, B. L. (1993). Hoover NPT dynamics for systems varying in shape and size. Molecular Physics, 78, 533.

    CAS  Google Scholar 

  • Mervis, J. (2001). NSF launches TeraGrid for academic research. Science, 293, 1235.

    CAS  Google Scholar 

  • Meyer, B. (2006). The pseudopotential plane wave approach. In J. Grotendorst, S. Blügel, & D. Marx (Eds.), Computational nanoscience: Do it yourself! Jülich: NIC. http://www2.fz-juelich.de/nic-series/volume31/meyer1.pdf. Accessed 02 July 2011.

  • Molden. (2010). A pre- and post processing program of molecular and electronic structure. http://www.cmbi.ru.nl/molden/. Accessed 02 July 2011.

  • Monard, G., Loos, M., Théry, V., Baka, K., & Rivail, J. L. (1996). Hybrid classical quantum force field for modeling very large molecules. International Journal of Quantum Chemistry, 58, 153.

    CAS  Google Scholar 

  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188.

    Google Scholar 

  • Moreno, J., & Soler, J. M. (1992). Optimal meshes for integrals in real- and reciprocal-space unit cells. Physical Review B, 45, 13891.

    Google Scholar 

  • Murphy, R. B., Philipp, D. M., & Friesner, R. A. (2000). Frozen orbital QM/MM methods for density functional theory. Chemical Physics Letters, 321, 113.

    CAS  Google Scholar 

  • Nemukhin, A. V., Grigorenko, B. L., Bochenkova, A. V., Topol, I. A., & Burt, S. K. (2002). A QM/MM approach with effective fragment potentials applied to the dipeptidewater structures. Journal of Molecular Structure (THEOCHEM), 581, 167.

    Google Scholar 

  • Nemukhin, A. V., Grigorenko, B. L., Topol, I. A., & Burt, S. K. (2003). Journal of Computational Chemistry, 24, 1410.

    CAS  Google Scholar 

  • Nosé, S. (1984a). A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 81, 511.

    Google Scholar 

  • Nosé, S. (1984b). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52, 255.

    Google Scholar 

  • NWChem. (2008). http://www.nwchem-sw.org/index.php/Main_Page. Accessed 02 July 2011.

  • ONETEP. (2005). http://www2.tcm.phy.cam.ac.uk/onetep/. Accessed 02 July 2011.

  • Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. Oxford: Oxford University Press.

    Google Scholar 

  • Parrinello, M., Hutter, J., Marx, D., Focher, P., Tuckerman, M., Andreoni, W., Curioni, A., Fois, E., Roetlisberger, U., Giannozzi, P., Deutsch, T., Alavi, A., Sebastiani, D., Laio, A., VandeVondele, J., Seitsonen, A., & Billeter, S. (2008). Car–Parrinello molecular dynamics: An ab initio electronic structure and molecular dynamics program. http://www.cpmd.org. Accessed 02 July 2011.

  • Pastore, G., Smargiassi, E., & Buda, F. (1991). Theory of ab initio molecular-dynamics calculations. Physical Review A44, 6334.

    Google Scholar 

  • PDB. (2010). RCSB protein data bank. http://www.rcsb.org/pdb. Accessed 02 July 2011.

  • Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671.

    CAS  Google Scholar 

  • Philipp, D. M., & Friesner, R. A. (1999). Mixed ab initio QM/MM modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. Journal of Computational Chemistry, 20, 1468.

    CAS  Google Scholar 

  • Phillips, J. C., Braun, R., Wang, W., Cumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Schulten, K. (2005a). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781.

    CAS  Google Scholar 

  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Schulten, K. (2005b). Journal of Computational Chemistry, 26, 1781.

    CAS  Google Scholar 

  • PINY. (2005). http://homepages.nyu.edu/∼mt33/PINY_MD/PINY.html. Accessed 02 July 2011.

  • Plimpton, S. J. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1.

    CAS  Google Scholar 

  • Polák, R. (1986). An investigation of the importance of many-centre effects in the diatomics-in-molecules approach. Chemical Physics, 103, 277.

    Google Scholar 

  • Ponder, J. W., Wu, C., Ren, P., Pande, V. S., Chodera, J. D., Schnieders, M. J., Haque, I., Mobley, D. L., Lambrecht, D. S., DiStasio, R. A., Jr.,Head-Gordon, M., Clark, G. N. I., Johnson, M. E., & Head-Gordon, T. (2010). Current status of the AMOEBA polarizable force field. The Journal of Physical Chemistry B, 114, 2549.

    CAS  Google Scholar 

  • Pu, J., Gao, J., & Truhlar, D. G. (2004a). Combining Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) with molecular mechanics by the Generalized Hybrid Orbital (GHO) method. The Journal of Physical Chemistry A, 108, 5454.

    CAS  Google Scholar 

  • Pu, J., Gao, J., & Truhlar, D. G. (2004b). Generalized Hybrid Orbital (GHO) method for combining ab initio Hartree-Fock wave functions with molecular mechanics. The Journal of Physical Chemistry A, 108, 632.

    CAS  Google Scholar 

  • Pu, J., Gao, J., & Truhlar, D. G. (2005). Generalized Hybrid-Orbital method for combining density functional theory with molecular mechanicals. ChemPhysChem, 6, 1853.

    CAS  Google Scholar 

  • Pulay, P. (1969). Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules I. Theory. Molecular Physics, 17, 197.

    Google Scholar 

  • Pulay, P. (1980). Convergence acceleration of iterative sequences. The case of SCF iteration. Chemical Physics Letters, 73, 393.

    Google Scholar 

  • Pulay, P. (1982). Improved SCF convergence acceleration. Journal of Computational Chemistry, 3, 556.

    CAS  Google Scholar 

  • Pulay, P. (1987). Analytical derivative methods in quantum chemistry. Advances in Chemical Physics, 69, 241.

    CAS  Google Scholar 

  • PWscf. (2009). http://www.pwscf.org/home.htm. Accessed 02 July 2011.

  • PyMOL. (2010). http://www.pymol.org. Accessed 02 July 2011.

  • QuantumEspresso. (2009). http://www.quantum-espresso.org. Accessed 02 July 2011.

  • RasMol. (2008). http://rasmol.org/. Accessed 02 July 2011.

  • Reciprocal Net. (2004). A distributed crystallography network for researchers, students and the general public. http://www.reciprocalnet.org. Accessed 02 July 2011.

  • Reed, D. A. (2003). Grids, the TeraGrid, and beyond. Computer, 36, 62.

    Google Scholar 

  • Refson, K. (2000). Moldy: A portable molecular dynamics simulation program for serial and parallel computers. Computer Physics Communications, 126, 310.

    CAS  Google Scholar 

  • Refson, K. (2001). Moldy user’s manual. http://www.ccp5.ac.uk/moldy/moldy.html/. Accessed 02 July 2011.

  • Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., & van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package. The Journal of Physical Chemistry A, 103, 3596.

    CAS  Google Scholar 

  • Segall, M. D., Lindan, P. L. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., & Payne, M. C. (2002). First-principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14, 2717.

    CAS  Google Scholar 

  • Senn, H. M., & Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie International Edition, 48, 1198.

    CAS  Google Scholar 

  • Shelley, J. C., Shelley, M. Y., Reeder, R. C., Bandyopadhyay, S., Moore, P. B., & Klein, M. L. (2001). Simulations of phospholipids using a coarse grain model. The Journal of Physical Chemistry B, 105, 9785.

    CAS  Google Scholar 

  • Shillcock, J. C., & Lipowsky, R. (2002). Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. Journal of Chemical Physics, 117, 5048.

    CAS  Google Scholar 

  • Shirts, M., & Pande, V. S. (2000). Screen savers of the world unite! Science, 290, 1903.

    Google Scholar 

  • Shurki, A., & Warshel, A. (2003). Structure/function correlations of enzymes using MM, QM/MM and related approaches; methods, concepts, Pitfalls and current progress. In V. Dagett (Ed.), Protein simulations, Adv. Protein Chem. (Vol. 66, p. 249). San Diego: Academic.

    Google Scholar 

  • SIESTA. (2010). http://www.icmab.es/siesta/. Accessed 02 July 2011.

  • Sironi, M., Genoni, A., Civera, M., Pieraccini, S., & Ghitti, M. (2007). Extremely localized molecular orbitals: Theory and applications. Theoretical Chemistry Accounts, 117, 685.

    CAS  Google Scholar 

  • Skylaris, C.-K., Haynes, P. D., Mostofi, A. A., & Payne, M. C. (2005). Introducing ONETEP: Linear-scaling density functional simulations on parallel computers. Journal of Chemical Physics, 122, 084119.

    Google Scholar 

  • Smith, W., Yong, C. W., & Rodger, P. M. (2002). DL_POLY: Application to molecular simulation. Molecular Simulation, 28, 385.

    CAS  Google Scholar 

  • Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14, 2745.

    CAS  Google Scholar 

  • S/PHI/nX. (2009). http://www.mpie.de/index.php?id=sxlib. Accessed 02 July 2011.

  • Sprik, M. (1991). Computer simulation of the dynamics of induced polarization fluctuations in water. The Journal of Physical Chemistry, 95, 2283.

    CAS  Google Scholar 

  • Stillinger, F., & Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Physical Review B, 31, 5262.

    CAS  Google Scholar 

  • Sun, H., Ren, P., & Fried, J. R. (1998). The COMPASS force field: Parameterization and validation for phosphazenes. Computational and Theoretical Polymer Science, 8, 229.

    CAS  Google Scholar 

  • Sutmann, G. (2002). Classical molecular dynamics. In J. Grotendorst, D. Marx, & A. Muramatsu (Eds.), Quantum simulations of complex many-body systems: From theory to algorithms. Jülich: NIC. http://www2.fz-juelich.de/nic-series/volume10/sutmann.pdf. Accessed 02 July 2011.

  • Sutmann, G. (2006). Molecular dynamics – vision and reality. In J. Grotendorst, S., Blügel, & D. Marx (Eds.), Computational nanoscience: Do it yourself! Jülich: NIC. http://www2.fz-juelich.de/nic-series/volume31/sutmann.pdf. Accessed 02 July 2011.

  • Swope, W. C., Anderson, H. C., Berens, P. H., & Wilson, K. R. (1982). Journal of Chemical Physics, 76, 637.

    CAS  Google Scholar 

  • Tepper, H. L., & Voth, G. A. (2005). A coarse-grained model for double-helix molecules in solution: Spontaneous helix formation and equilibrium properties. Journal of Chemical Physics, 122, 124906.

    Google Scholar 

  • Tersoff, J. (1988). New empirical approach for the structure and energy of covalent systems. Physical Review B, 37, 6991.

    Google Scholar 

  • Tersoff, J. (1989). Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 39, 5566.

    Google Scholar 

  • Théry, V., Rinaldi, D., Rivail, J. L., Maigret, B., & Ferenczy, G. G. (1994). Quantum mechanical computations on very large molecular systems: The local self-consistent field method. Journal of Computational Chemistry, 15, 269.

    Google Scholar 

  • Thiel, W. (2009). QM/MM methodology: Fundamentals, scope, and limitations. In J. Grotendorst, N. Attig, S. Blgel, & D. Marx (Eds.), Multiscale simulation methods in molecular sciences. Jülich: NIC. http://www2.fz-juelich.de/nic-series/volume42/thiel.pdf. Accessed 02 July 2011.

  • Todorov, I. T., & Smith, W. (2009). The DL_POLY_3 user manual. http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/. Accessed 02 July 2011.

  • Tosi, M. P., & Fumi, F. G. (1964). Ionic sizes and born repulsive parameters in the NaCl-type alkali halides II : The generalized Huggins-Mayer form. Journal of Physics and Chemitry of Solids, 25, 45.

    CAS  Google Scholar 

  • Toth (2009). Information systems. http://www.tothcanada.com. Accessed 02 July 2011.

  • Toton, D., Lorenz, C. D., Rompotis, N., Martsinovich, N., & Kantorovich, L. (2010). Temperature control in molecular dynamic simulations of non-equilibrium processes. Journal of Physics Condensed Matter, 22, 074205.

    Google Scholar 

  • Tozzini, V. (2005). Coarse-grained models for proteins.Current Opinion in Structural Biology, 15, 144.

    Google Scholar 

  • Troullier, N., & Martins, J. L. (1990). A straightforward method for generating soft transferable pseudopotentials. Solid State Communications, 74, 613.

    Google Scholar 

  • Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 1993.

    CAS  Google Scholar 

  • Tuckerman, M. E. (2002). Path integration via molecular dynamics. In J. Grotendorst, D. Marx, & A. Muramatsu (Eds.), Quantum simulations of complex many-body systems: From theory to algorithms, Jülich: NIC. http://www.fz-juelich.de/nic-series/volume10/tuckerman1.pdf. Accessed 02 July 2011.

  • Tuckerman, M. E., & Hughes, A. (1998). Path integral molecular dynamics. In B. J. Berne, G. Ciccotti, & D. F. Coker (Eds.), Classical and quantum dynamics in condensed phase simulations (p. 311). Singapore: World Scientific.

    Google Scholar 

  • Tuckerman, M. E., Berne, B. J., Martyna, G. J., & Klein, M. L. (1993). Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. Journal of Chemical Physics, 99, 2796.

    Google Scholar 

  • van Beest, B. W. H., Kramer, G. J., & van Santen, R. A. (1990). Force fields for silicas and aluminophosphates based on ab initio calculations. Physical Review Letters, 64, 1955.

    Google Scholar 

  • van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005 a). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701.

    Google Scholar 

  • van der Spoel, D., Lindahl, E., Hess, B., van Buuren, A. R., Apol, E., Meulenhoff, P. J., Tieleman, D. P., Sijbers, A. L. T. M., Feenstra, K. A., van Drunen, R., & Berendsen, H. J. C. (2005 b). Gromacs user manual version 4.0. http://www.gromacs.org/. Accessed 02 July 2011.

  • Vanderbilt, D. (1985). Optimally smooth norm-conserving pseudopotentials. Physical Review B, 32, 8412.

    CAS  Google Scholar 

  • Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892.

    Google Scholar 

  • Vanderbilt Ultra-Soft Pseudopotential Site. (2006). http://www.physics.rutgers.edu/∼dhv/uspp/. Accessed 02 July 2011.

  • VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., & Hutter, J. (2005). Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Computer Physics Communications, 167, 103.

    CAS  Google Scholar 

  • VandeVondele, J., Iannuzzi, M., & Hutter, J. (2006). Large scale condensed matter calculations using the Gaussian and augmented plane waves method. In Computer simulations in condensed matter systems: From materials to chemical biology, Volume 1. Lecture notes in physics (Vol. 703, p. 287). Berlin/Heidelberg: Springer.

    Google Scholar 

  • VASP. (2009). http://cms.mpi.univie.ac.at/vasp/. Accessed 02 July 2011.

  • Verlet, L. (1967). Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159, 98.

    Google Scholar 

  • VMD. (2009). http://www.ks.uiuc.edu/Research/vmd/. Accessed 02 July 2011.

  • Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin-density calculations – A critical analysis. Canadian Journal of Physics, 58, 1200.

    CAS  Google Scholar 

  • Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Toward direct determination of conformations of protein building units from multidimensional NMR experiments. V. NMR chemical shielding analysis of N-formyl-serinamide, a model for polar side-chain containing peptides. Journal of Computational Chemistry, 24, 1157.

    Google Scholar 

  • Warshel, A. (1991). Computer modeling of chemical reactions in enzymes and solutions. New York: Wiley.

    Google Scholar 

  • Warshel, A. (2003). Computer simulations of enzyme catalysis: Methods, progress, and insights. Annual Review of Biophysics and Biomolecular Structure, 32, 425.

    CAS  Google Scholar 

  • Warshel, A., & Levitt, M. (1976). Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology, 103, 227.

    CAS  Google Scholar 

  • Woodcock, L. V. (1971). Isothermal molecular dynamics calculations for liquid salts. Chemical Physics Letters, 10, 257.

    CAS  Google Scholar 

  • Worth, G. A., Meyer, H. D., Koeppel, H., Cederbaum, L. S., & Burghardt, I. (2008). Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics. International Reviews in Physical Chemistry, 27, 569.

    CAS  Google Scholar 

  • Zhang, Y. (2005). A pseudobond approach to combining quantum mechanical and molecular mechanical methods. Journal of Chemical Physics, 122, 024114.

    Google Scholar 

  • Zhang, Y. (2006). Pseudobond ab initio QM/MM approach and its applications to enzyme reactions. Theoretical Chemistry Accounts, 116, 43.

    CAS  Google Scholar 

  • Zhang, Y., Lee, T.-S., & Yang, W. (1999). A pseudobond approach to combining quantum mechanical and molecular mechanical methods. Journal of Chemical Physics, 110, 46.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Lorenz, C., Doltsinis, N.L. (2012). Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_7

Download citation

Publish with us

Policies and ethics