Skip to main content

Low-Energy Electron (LEE)-Induced DNA Damage: Theoretical Approaches to Modeling Experiment

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

Low-energy electrons (LEE) have been experimentally found to result in DNA damage such as base damage, base release, and strand breaks. This has engendered a considerable number of theoretical studies of the mechanisms involved in the DNA damage. In this chapter, we discuss the various pathways for LEE interaction with DNA and the theoretical treatments most suited to unravel these pathways. For example, inelastic electron scattering produces excitation, ionization, and transient negative ions (TNI) via shape, core-excited, and vibrational Feshbach resonances, which can all lead to DNA damage. Each of these pathways is distinguished and pertinent to the experimental results and theoretical approaches used to explain the results described. Shape resonances can be understood as interactions with the electron with unoccupied molecular orbitals of neutral molecule, while core-excited states involve excitation of inner shell electrons and can be treated with theoretical methods such as time-dependent density functional theory (TD-DFT) or CASSCF. In treating the electron–molecule interaction, special care is needed to distinguish between diffuse and valence states of the TNI. The role of the vertical and adiabatic states of the radical anion is important as the electron adds to the neutral molecular framework, and reactions induced likely occur before equilibration to the adiabatic state. The effect of solvation is critical to both energetics of the interaction and the nature of the TNI formed. For example, gas-phase calculations show diffuse dipole-bound character for adenine, guanine, and cytosine anion radicals, but each of these is found to be in a valence state in aqueous solution by experiment. DNA base anion radicals often show ground states that are diffuse in character and that collapse to valence states on solvation. Such processes are shown to be accounted for inclusion of the polarized continuum model (PCM) for solvation. TD-DFT excited-state calculations including solvation show that the diffuse states rise in energy on solvation as expected. For LEE in the aqueous phase, new energy states become available such as conduction band or presolvated electrons, which may have sufficient energy to cause DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdoul-Carime, H., Huels, M. A., Illenberger, E., & Sanche, L. (2001). Sensitizing DNA to secondary electron damage: Resonant formation of oxidative radicals from 5-halouracils. Journal of the American Chemical Society, 123, 5354.

    CAS  Google Scholar 

  • Abdoul-Carime, H., Gohlke, S., & Illenberger, E. (2004a). Site-specific dissociation of DNA bases by slow electrons at early stages of irradiation. Physical Review Letters, 92, 168103.

    Google Scholar 

  • Abdoul-Carime, H., Gohlke, S., Fischbach, E., Scheike, J., & Illenberger, E. (2004b). Thymine excision from DNA by subexcitation electrons. Chemical Physics Letters, 387, 267.

    CAS  Google Scholar 

  • Adhikary, A., Malkhasian, A. Y. S., Collins, S., Koppen, J., Becker, D., & Sevilla, M. D. (2005). UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures. Nucleic Acids Research, 33, 5553.

    CAS  Google Scholar 

  • Adhikary, A., Collins, S., Koppen, J., Becker, D., & Sevilla, M. D. (2006a). C5- and C3-sugar radicals produced via photo-excitation of one-electron oxidized adenine in 2-deoxyadenosine and its derivatives. Nucleic Acids Research, 34, 1501.

    CAS  Google Scholar 

  • Adhikary, A., Kumar, A., & Sevilla, M. D. (2006b). Photo-induced hole transfer from base to sugar in DNA: Relationship to primary radiation damage. Radiation Research, 165, 479.

    CAS  Google Scholar 

  • Adhikary, A., Collins, S., Khanduri, D., & Sevilla, M. D. (2007). Sugar radicals formed by photoexcitation of guanine cation radical in oligonucleotides. The Journal of Physical Chemistry B, 111, 7415.

    CAS  Google Scholar 

  • Adhikary, A., Khanduri, D., Kumar, A., & Sevilla, M. D. (2008). Photoexcitation of adenine cation radical [A ▪ + ] in the near UV-vis region produces sugar radicals in adenosine and in its nucleotides. The Journal of Physical Chemistry B, 112, 15844.

    CAS  Google Scholar 

  • Aflatooni, K., Gallup, G. A., & Burrow, P. D. (1998). Electron attachment energies of the DNA bases. The Journal of Physical Chemistry A, 102, 6205.

    CAS  Google Scholar 

  • Allan, M. (1989). Study of triplet states and short-lived negative ions by means of electron impact spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 48, 219.

    CAS  Google Scholar 

  • Anusiewicz, I., Berdys, J., Sobczyk, M., Skurski, P., & Simons, J. (2004). Effects of base π-stacking on damage to DNA by low-energy electrons. The Journal of Physical Chemistry A, 108, 11381.

    CAS  Google Scholar 

  • Ashfold, M. N. R., Cronin, B., Devine, A. L., Dixon, R. N., & Nix, G. D. (2006). The role of pi sigma  excited states in the photodissociation of heteroaromatic molecules. Science, 312, 1637.

    CAS  Google Scholar 

  • Baccarelli, I., Gianturco, F. A., Grandi, A., Sanna, N., Lucchese, R. R., Bald, I., et al. (2007). Selective bond breaking in β-D-ribose by gas-phase electron attachment around 8 eV. Journal of the American Chemical Society, 129, 6269.

    CAS  Google Scholar 

  • Bachorz, A. R., Klopper, W., & Gutowski, M. (2007). Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion. The Journal of Chemical Physics, 126, 085101.

    Google Scholar 

  • Baker, J., Wolinski, K., Malagoli, M., Kinghorn, D., Wolinski, P., Magyarfalvi, G., et al. (2009). Quantum chemistry in parallel with PQS. Journal of Computational Chemistry, 30, 317.

    CAS  Google Scholar 

  • Bald, I., Kopyra, J., & Illenberger, E. (2006). Selective excision of C5 from D-ribose in the gas phase by low-energy electrons (0–1 eV): Implications for the mechanism of DNA damage. Angewandte Chemie International Edition, 45, 4851.

    CAS  Google Scholar 

  • Bald, I., Dąbkowska, I., & Illenberger, E. (2008). Probing biomolecules by laser-induced acoustic desorption: Electrons at near zero electron volts trigger sugar–phosphate cleavage. Angewandte Chemie International Edition, 47, 8518.

    CAS  Google Scholar 

  • Bao, X., Wang, J., Gu, J., & Leszczynski, J. (2006). DNA strand breaks induced by near-zero-electronvolt electron attachment to pyrimidine nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 103, 5658.

    CAS  Google Scholar 

  • Barrios, R., Skurski, P., & Simons, J. (2002). Mechanism for damage to DNA by low-energy electrons. The Journal of Physical Chemistry B, 106, 7991.

    CAS  Google Scholar 

  • Becker, D., & Sevilla, M. D. (1993). The chemical consequences of radiation damage to DNA. Advances in Radiation Biology, 17, 121.

    Google Scholar 

  • Becker, D., & Sevilla, M. D. (2008). EPR studies of radiation damage to DNA and related molecules. Electron Paramagnetic Resonance, 21, 33.

    CAS  Google Scholar 

  • Becker, D., Razskazovskii, Y., Callaghan, M. U., & Sevilla, M. D. (1996). Electron spin resonance of DNA irradiated with a heavy-ion beam (16O8 + ): Evidence for damage to the deoxyribose phosphate backbone. Radiation Research, 146, 361.

    CAS  Google Scholar 

  • Becker, D., Bryant-Friedrich, A., Trzasko, C., & Sevilla, M. D. (2003). Electron spin resonance study of DNA irradiated with an argon-ion beam: Evidence for formation of sugar phosphate backbone radicals. Radiation Research, 160, 174.

    CAS  Google Scholar 

  • Becker, D., Adhikary, A., & Sevilla, M. D. (2007). The role of charge and spin migration in DNA radiation damage. In T. Chakraborty (Ed.), Charge migration in DNA (p. 139). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Becker, D., Adhikary, A., & Sevilla, M. D. (2010). Mechanisms of radiation-induced DNA damage: Direct effects. In B. S. M. Rao & J. Wishart (Eds.), Recent trends in radiation chemistry (p. 509). Singapore/New Jersey/London: World Scientific Publishing.

    Google Scholar 

  • Bouda¨ıffa, B., Cloutier, P., Hunting, D., Huels, M. A., & Sanche, L. (2000). Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science, 287, 1658.

    Google Scholar 

  • Brun, E., Cloutier, P., Sicard-Roselli, C., Fromm, M., & Sanche, L. (2009). Damage induced to DNA by low-energy (0–30 eV) electrons under vacuum and atmospheric conditions. The Journal of Physical Chemistry B, 113, 10008.

    CAS  Google Scholar 

  • Burrow, P. D., Gallup, G. A., Scheer, A. M., Denifl, S., Ptasińska, S., M¨ark, T., et al. (2006). Vibrational Feshbach resonances in uracil and thymine. The Journal of Chemical Physics, 124, 124310.

    CAS  Google Scholar 

  • Burrow, P. D., Gallup, G. A., & Modelli, A. (2008). Are there π  shape resonances in electron scattering from phosphate groups? The Journal of Physical Chemistry A, 112, 4106.

    CAS  Google Scholar 

  • Burrows, C. J., & Muller, J. G. (1998). Oxidative nucleobase modifications leading to strand scission. Chemical Reviews, 98, 1109.

    CAS  Google Scholar 

  • Cadet, J., Douki, T., & Ravanat, J. L. (2008). Oxidatively generated damage to the guanine moiety of DNA: Mechanistic aspects and formation in cells. Accounts of Chemical Research, 41, 1075.

    CAS  Google Scholar 

  • Caron, L., & Sanche, L. (2003). Low-energy electron diffraction and resonances in DNA and other helical macromolecules. Physical Review Letters, 91, 113201.

    CAS  Google Scholar 

  • Caron, L., & Sanche, L. (2004). Diffraction in resonant electron scattering from helical macromolecules: A- and B-type DNA. Physical Review A, 70, 032719.

    Google Scholar 

  • Caron, L., & Sanche, L. (2005). Diffraction in resonant electron scattering from helical macromolecules: Effects of the DNA backbone. Physical Review A, 72, 032726.

    Google Scholar 

  • Caron, L., & Sanche, L. (2006). Temporary electron localization and scattering in disordered single strands of DNA. Physical Review A, 73, 062707.

    Google Scholar 

  • Caron, L., Sanche, L., Tonzani, S., & Greene, C. H. (2008). Diffraction in low-energy electron scattering from DNA: Bridging gas-phase and solid-state theory. Physical Review A, 78, 042710.

    Google Scholar 

  • Chen, D., & Gallup, G. A. (1990). The relationship of the virtual orbitals of self-consistent-field theory of temporary negative ions in electron scattering from molecules. The Journal of Chemical Physics, 93, 8893.

    CAS  Google Scholar 

  • Colson, A. O., Besler, B., & Sevilla, M. D. (1992). Ab initio molecular orbital calculations on DNA base pair radical ions: Effect of base pairing on proton-transfer energies, electron affinities, and ionization potentials. The Journal of Physical Chemistry, 96, 9787.

    CAS  Google Scholar 

  • Compton, R. N., Yoshioka, Y., & Jordan, K. D. (1980). Comment on semi-empirical calculations of electron affinities. Theoretica Chimica Acta, 54, 259.

    CAS  Google Scholar 

  • Crowell, R. A., & Bartels, D. M. (1996). Multiphoton ionization of liquid water with 3. 0–5. 0 eV photons. Journal of Physical Chemistry, 100, 17940.

    Google Scholar 

  • Dabkowska, I., Rak, J., & Gutowski, M. (2005). DNA strand breaks induced by concerted interaction of H radicals and low-energy electrons – A computational study on the nucleotide of cytosine. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 35, 429.

    CAS  Google Scholar 

  • Denifl, S., Sulzer, P., Huber, D., Zappa, F., Probst, M., M¨ark, T. D., et al. (2007). Influence of functional groups on the site-selective dissociation of adenine upon low-energy electron attachment. Angewandte Chemie International Edition, 46, 5238.

    CAS  Google Scholar 

  • Desfancois, C., Abdoul-Carime, H., & Schermann, J. P. (1996). Electron attachment to isolated nucleic acid bases. The Journal of Chemical Physics, 104, 7792.

    Google Scholar 

  • Desfancois, C., Periquet, V., Bouteiller, Y., & Schermann, J. P. (1998). Valence and dipole binding of electrons to uracil. The Journal of Physical Chemistry A, 102, 1274.

    Google Scholar 

  • Dessent, C. E. H., Kim, J., Johnson, M. A. (2000). Spectroscopic observation of vibrational Feshbach resonances in near-threshold photoexcitation of X − . CH3NO2 (X  = I  and Br  ). Faraday Discussion, 115, 395.

    CAS  Google Scholar 

  • Domcke, W., & Sobolewski, A. L. (2003). Chemistry-unraveling the molecular mechanisms of photoacidity. Science, 302, 1693.

    CAS  Google Scholar 

  • Dora, A., Tennyson, J., Bryjko, L., & van Mourik, T. (2009). R-matrix calculation of low-energy electron collisions with uracil. The Journal of Chemical Physics, 130, 164307.

    Google Scholar 

  • Dreuw, A., & Head-Gordon, M. (2005). Single-reference ab Initio methods for the calculation of excited states of large molecules. Chemical Reviews, 105, 4009.

    CAS  Google Scholar 

  • Eustis, S., Wang, D., Lyapustina, S., & Bowen, K. H. (2007). Photoelectron spectroscopy of hydrated adenine anions. The Journal of Chemical Physics, 127, 224309.

    Google Scholar 

  • Galduel, Y., Pommeret, S., Migus, A., & Antonetti, A. (1989). Femtosecond dynamics of qemhate pair recombination in pure liquid water. The Journal of Physical Chemistry, 93, 3880.

    Google Scholar 

  • Gianturco, F. A., & Lucchese, R. R. (2004). Radiation damage of biosystems mediated by secondary electrons: Resonant precursors for uracil molecules. The Journal of Chemical Physics, 120, 7446.

    CAS  Google Scholar 

  • Gianturco, F. A., Sebastianelli, F., Lucchese, R. R., Baccarelli, I., & Sanna, N. (2008). Ring-breaking electron attachment to uracil: Following bond dissociations via evolving resonances. The Journal of Chemical Physics, 128, 174302.

    Google Scholar 

  • Gregoli, S., Olast, M., & Bertinchamps, A. (1989). Radiolytic pathways in γ-irradiated DNA: Influence of chemical and conformational factors. Radiation Research, 89, 238.

    Google Scholar 

  • Gu, J., Xie, Y., & Schaefer, H. F. (2005). glycosidic bond cleavage of pyrimidine nucleosides by low-energy electrons: A theoretical rationale. Journal of the American Chemical Society, 127, 1053.

    CAS  Google Scholar 

  • Gu, J., Wang, J., & Leszczynski, J. (2006). Electron attachment-induced DNA single strand breaks: \({\mathrm{C}}_{{3}^{{\prime}}}\mbox{ -}{\mathrm{O}}_{{3}^{{\prime}}}\) σ-bond breaking of pyrimidine nucleotides predominates. Journal of the American Chemical Society, 128, 9322.

    CAS  Google Scholar 

  • Gu, J. D., Wang, J., & Leszczynski, J. (2010a). Electron attachment-induced DNA single-strand breaks at the pyrimidine sites. Nucleic Acids Research, 38, 5280.

    CAS  Google Scholar 

  • Gu, J., Wang, J., & Leszczynski, J. (2010b). Comprehensive analysis of DNA strand breaks at the guanosine site induced by low-energy electron attachment. Chemphyschem, 11, 175.

    CAS  Google Scholar 

  • Hanel, G., Gstir, B., Denifl, S., Scheier, P., Probst, M., Farizon, B., et al. (2003). Electron attachment to uracil: Effective destruction at subexcitation energies. Physical Review Letters, 90, 188104.

    CAS  Google Scholar 

  • Haranczyk, M., & Gutowski, M. (2005). Valence and dipole-bound anions of the most stable tautomers of guanine. Journal of the American Chemical Society, 127, 699.

    CAS  Google Scholar 

  • Hendricks, J. H., Lyapustina, S. A., de Clercq, H. L., Snodgrass, J. T., & Bowen, K. H. (1996). Dipole bound, nucleic acid base anions studied via negative ion photoelectron spectroscopy. The Journal of Chemical Physics, 104, 7788.

    CAS  Google Scholar 

  • Hendricks, J. H., Lyapustina, S. A., de Clercq, H. L., & Bowen, K. H. (1998). The dipole bound-to-covalent anion transformation in uracil. The Journal of Chemical Physics, 108, 8.

    CAS  Google Scholar 

  • Hotop, H., Ruf, M. W., Allan, M., & Fabrikant, I. I. (2003). Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters. Advances in Atomic, Molecular, and Optical Physics, 49, 85.

    CAS  Google Scholar 

  • Huels, M. A., Bouda¨ıffa, B., Cloutier, P., Hunting, D., & Sanche, L. (2003). Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. Journal of the American Chemical Society, 125, 4467.

    CAS  Google Scholar 

  • Hush, N. S., & Cheung, A. S. (1975). Ionization potentials and donor properties of nucleic acid bases and related compounds. Chemical Physics Letters, 34, 11.

    CAS  Google Scholar 

  • Illenberger, E. (1992). Electron-attachment reactions in molecular clusters. Chemical Reviews, 92, 1589.

    CAS  Google Scholar 

  • International Commission on Radiation Units and Measurements. (1979). ICRU Report No. 31. ICRU, Washington, DC.

    Google Scholar 

  • Jordan, K. D., & Burrow, P. D. (1987). Temporary anion states of polyatomic hydrocarbons. Chemical Reviews, 87, 557.

    CAS  Google Scholar 

  • Khanduri, D., Collins, S., Kumar, A., Adhikary, A., & Sevilla, M. D. (2008). Formation of sugar radicals in RNA model systems and oligomers via excitation of guanine cation radical. The Journal of Physical Chemistry B, 112, 2168.

    CAS  Google Scholar 

  • Kobyłecka, M., Leszczynski, J., & Rak, J. (2008). Valence anion of thymine in the DNA π-stack. Journal of the American Chemical Society, 130, 15683.

    Google Scholar 

  • K¨onig, C., Kopyra, J., Bald, I., & Illenberger, E. (2006). Dissociative electron attachment to phosphoric acid esters: The direct mechanism for single strand breaks in DNA. Physical Review Letters, 97, 018105.

    Google Scholar 

  • Kumar, A., & Sevilla, M. D. (2007). Low-energy electron attachment to 5-thymidine monophosphate: Modeling single strand breaks through dissociative electron attachment. The Journal of Physical Chemistry B, 111, 5464.

    CAS  Google Scholar 

  • Kumar, A., & Sevilla, M. D. (2008a). Radiation effects on DNA: Theoretical investigations of electron, hole and excitation pathways to DNA damage. In M. K. Shukla, J. Leszczynski (Eds.), & J. Leszczynski (Series Ed.), Radiation induced molecular phenomena in nucleic acids:Vol. 5. Challenges and advances in computational chemistry and physics (p. 577). Amsterdam: Springer.

    Google Scholar 

  • Kumar, A., & Sevilla, M. D. (2008b). The role of πσ  excited states in electron-induced DNA strand break formation: A time-dependent density functional theory study. Journal of the American Chemical Society, 130, 2130.

    CAS  Google Scholar 

  • Kumar, A., & Sevilla, M. D. (2009). Role of excited states in low-energy electron (LEE) induced strand breaks in DNA model systems: Influence of aqueous environment. ChemPhysChem, 10, 1426.

    CAS  Google Scholar 

  • Kumar, A., & Sevilla, M. D. (2010a). Proton-coupled electron transfer in DNA on formation of radiation-produced Ion radicals. Chemical Reviews, 110, 7002.

    CAS  Google Scholar 

  • Kumar, A., & Sevilla, M. D. (2010b). Theoretical modeling of radiation-induced DNA damage. In M. Greenberg (Ed.), Radical and radical ion reactivity in nucleic acid chemistry (p. 1). Hoboken: Wiley, ISBN: 978-0-470-25558-2.

    Google Scholar 

  • Lane, N. F. (1980). The theory of electron-molecule collisions. Reviews of Modern Physics, 52, 29.

    CAS  Google Scholar 

  • Levesque, P. L., Michaud, M., Sanche, L. (2003). Cross sections for low energy (1–12 eV) inelastic electron scattering from condensed thymine. Nuclear Instruments and Methods in Physics Research B, 208, 225.

    CAS  Google Scholar 

  • Li, X. F., Cai, Z. L., & Sevilla, M. D. (2002). DFT calculations of the electron affinities of nucleic acid bases: Dealing with negative electron affinities. The Journal of Physical Chemistry A, 106, 1596.

    CAS  Google Scholar 

  • Li, X. F., Sevilla, M. D., & Sanche, L. (2004). Hydrogen atom loss in pyrimidine DNA bases induced by low-energy electrons: Energetics predicted by theory. The Journal of Physical Chemistry B, 108, 19013.

    CAS  Google Scholar 

  • Li, X., & Sevilla, M. D. (2007). DFT treatment of radiation produced radicals in DNA model systems. Advances in Quantum Chemistry, 52, 59.

    CAS  Google Scholar 

  • Li, Z., Zheng, Y., Cloutier, P., Sanche, L., & Wagner, J. R. (2008). Low energy electron induced DNA damage: Effects of terminal phosphate and base moieties on the distribution of damage. Journal of the American Chemical Society, 130, 5612.

    CAS  Google Scholar 

  • Li, Z., Cloutier, P., Sanche, L., & Wagner, J. R. (2010). Low-energy electron-induced DNA damage effect of base sequence in oligonucleotide trimers. Journal of the American Chemical Society, 132, 5422.

    CAS  Google Scholar 

  • Loos, P. F., Dumont, E., Laurent, A. D., & Assfeld, X. (2009). Important effects of neighbouring nucleotides on electron induced DNA single-strand breaks. Chemical Physics Letters, 475, 120.

    CAS  Google Scholar 

  • Martin, F., Burrow, P. D., Cai, Z., Cloutier, P., Hunting, D., & Sanche, L. (2004). DNA strand breaks induced by 0–4 eV electrons: The role of shape resonances. Physical Review Letters, 93, 068101.

    Google Scholar 

  • McConkey, J. W., Malone, C. P., Johnson, P. V., Winstead, C., McKoy, V., & Kanik, I. (2008). Electron impact dissociation of oxygen-containing molecules – A critical review. Physics Reports, 466, 1.

    CAS  Google Scholar 

  • Modelli, A. (2003). Electron attachment and intramolecular electron transfer in unsaturated chloroderivatives. Physical Chemistry Chemical Physics, 5, 2923.

    CAS  Google Scholar 

  • Modelli, A., & Martin, H. D. (2002). Temporary anions and empty level structure in cyclobutanediones: Through-space and through-bond interactions. The Journal of Physical Chemistry A, 106, 7271.

    CAS  Google Scholar 

  • Nabben, F. J., Karman, J. P., & Loman, H. (1982). Inactivation of biologically active DNA by hydrated electrons. International Journal of Radiation Biology, 42, 23.

    CAS  Google Scholar 

  • Neese, F., Hansen, A., Wennmohs, F., & Grimme, S. (2009). Accurate theoretical chemistry with coupled pair models. Accounts of Chemical Research, 42, 641.

    CAS  Google Scholar 

  • Orlando, T. M., Oh, D., Chen, Y., & Aleksandrov, A. B. (2008). Low-energy electron diffraction and induced damage in hydrated DNA. The Journal of Chemical Physics, 128, 195102.

    Google Scholar 

  • Orlov, V. M., Smirnov, A. N., & YaM, V. (1976). Ionization potentials and electron-donor ability of nucleic acid bases and their analogues. Tetrahedron Letters, 17, 4315.

    Google Scholar 

  • Oyler, N. A., & Adamowicz, L. (1993). Electron attachment to uracil. Theoretical ab initio study. The Journal of Physical Chemistry, 97, 11122.

    CAS  Google Scholar 

  • Oyler, N. A., & Adamowicz, L. (1994). Theoretical ab initio calculations of the electron affinity of thymine. Chemical Physics Letters, 219, 223.

    CAS  Google Scholar 

  • Panajotovic, R., Martin, F., Cloutier, P. C., Hunting, D., & Sanche, L. (2006). Effective cross sections for production of single-strand breaks in plasmid DNA by 0. 1 to 4. 7 eV electrons. Radiation Research, 165, 452.

    CAS  Google Scholar 

  • Park, Y., Li, Z., Cloutier, P., Sanche, L., & Wagner, J. R. (2011). DNA damage induced by low-energy electrons: Conversion of thymine to 5,6-dihydrothymine in the oligonucleotide trimer TpTpT. Radiation Research, 175, 240.

    CAS  Google Scholar 

  • Periquet, V., Moreau, A., Carles, S., Schermann, J. P., & Desfran¸cois, C. (2000). Cluster size effects upon anion solvation of N-heterocyclic molecules and nucleic acid bases. Journal of Electron Spectroscopy and Related Phenomena, 106, 141.

    CAS  Google Scholar 

  • Pimblott, S. M., & LaVerne, J. A. (2007). Production of low-energy electrons by ionizing radiation. Radiation Physics and Chemistry, 76, 1244.

    CAS  Google Scholar 

  • Pimblott, S. M., Laverne, J. A., & Mozumber, A. (1996). Monte Carlo simulation of range and energy deposition by electrons in gaseous and liquid water. The Journal of Physical Chemistry, 100, 8595.

    CAS  Google Scholar 

  • Ptasińska, S., & Sanche, L. (2007a). Dissociative electron attachment to a basic DNA. Physical Chemistry Chemical Physics, 9, 1730.

    Google Scholar 

  • Ptasińska, S., & Sanche, L. (2007b). Dissociative electron attachment to hydrated single DNA strands. Physical Review E, 75, 031915.

    Google Scholar 

  • Ptasińska, S., Denifl, S., Scheier, P., Illenberger, E., & M¨ark, T. D. (2005a). Bond- and site-selective loss of H atoms from nucleobases by very-low-energy electrons ( < 3 eV). Angewandte Chemie International Edition, 44, 6941.

    Google Scholar 

  • Ptasińska, S., Denifl, S., Grill, V., M¨ark, T. D., Illenberger, E., & Scheier, P. (2005b). Bond- and site-selective loss of H{ _} from pyrimidine bases. Physical Review Letters, 95, 093201.

    Google Scholar 

  • Ptasińska, S., Denifl, S., Grill, V., M¨ark, T. D., Scheier, P., Gohlke, S., Huels, M. A., & Illenberger, E. (2005c). Bond-selective H  ion abstraction from thymine. Angewandte Chemie International Edition, 44, 1647.

    Google Scholar 

  • Ptasińska, S., Denifl, S., Gohlke, S., Scheier, P., Illenberger, E., & M¨ark, T. D. (2006). Decomposition of thymidine by low-energy electrons: Implications for the molecular mechanisms of single-strand breaks in DNA. Angewandte Chemie International Edition, 45, 1893.

    Google Scholar 

  • Puiatti, M., Vera, D. M. A., & Pierini, A. B. (2009). In search for an optimal methodology to calculate the valence electron affinities of temporary anions. Physical Chemistry Chemical Physics, 11, 9013.

    CAS  Google Scholar 

  • Rak, J., Mazurkiewicz, K., Kobyłecka, M., Storoniak, P., Haranczyk, M., Dąbkowska, I., Bachorz, R. A., Gutowski, M., Radisic, D., Stokes, S. T., Eustis, S. N., Wang, D., Li, X., Ko, Y. J., & Bowen, K. H. (2008). Stable valence anions of nucleic acid bases and DNA strand breaks induced by low energy electrons. In M. K. Shukla, J. Leszczynski (Eds.), & J. Leszczynski (Series Ed.) Radiation induced molecular phenomena in nucleic acids: Vol. 5. Challenges and advances in computational chemistry and physics (p. 619). Amsterdam: Springer.

    Google Scholar 

  • Rak, J., Kobyzecka, M., & Storoniak, P. (2011). Single strand break in DNA coupled to the O-P bond cleavage. A computational study. The Journal of Physical Chemistry B, 115, 1911.

    Google Scholar 

  • Sanche, L. (1995). Interactions of low-energy electrons with atomic and molecular-solids. Scanning Microscopy, 9, 619.

    CAS  Google Scholar 

  • Sanche, L. (2005). Low energy electron-driven damage in biomolecules. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 35, 367.

    CAS  Google Scholar 

  • Sanche, L. (2008) Low energy electron damage to DNA. In M. K. Shukla, J. Leszczynski (Eds.), & J. Leszczynski (Series Ed.), Radiation induced molecular phenomena in nucleic acids: Vol. 5. Challenges and advances in computational chemistry and physics (p. 531). Amsterdam: Springer.

    Google Scholar 

  • Sanche, L. (2009). Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer. Chemical Physics Letters, 474, 1.

    CAS  Google Scholar 

  • Sanche, L. (2010). Low-energy electron interaction with DNA: Bond dissociation and formation of transient anions, radicals, and radical anions. In M. Greenberg (Ed.), Radical and radical ion reactivity in nucleic acid chemistry (p. 239). Hoboken: Wiley, ISBN: 978-0-470-25558-2.

    Google Scholar 

  • Scheer, A. M., Aflatooni, K., Gallup, G. A., & Burrow, P. D. (2004). Bond breaking and temporary anion states in uracil and halouracils: Implications for the DNA bases. Physical Review Letters, 92, 068102.

    CAS  Google Scholar 

  • Schiedt, J., Weinkauf, R., Neumark, D. M., & Schlag, E. W. (1998). Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters. Chemical Physics, 239, 511.

    CAS  Google Scholar 

  • Schulz, G. J. (1973a). Resonances in electron impact on atoms. Reviews of Modern Physics, 45, 378.

    CAS  Google Scholar 

  • Schulz, G. J. (1973b). Resonances in electron impact on diatomic molecules. Reviews of Modern Physics, 45, 423.

    CAS  Google Scholar 

  • Schwabe, T., & Grimme, S. (2008). Theoretical thermodynamics for large molecules: Walking the thin line between accuracy and computational cost. Accounts of Chemical Research, 41, 569.

    CAS  Google Scholar 

  • Schyman, P., & Laaksonen, A. (2008). On the effect of low-energy electron induced DNA strand break in aqueous solution: A Theoretical study indicating guanine as a weak link in DNA. Journal of the American Chemical Society, 130, 12254.

    CAS  Google Scholar 

  • Schyman, P., Laaksonen, A., & Hugosson, H. W. (2008). Phosphodiester bond rupture in 5 and 3 cytosine monophosphate in aqueous environment and the effect of low-energy electron attachment: A Car–Parrinello QM/MM molecular dynamics study. Chemical Physics Letters, 462, 289.

    CAS  Google Scholar 

  • Sevilla, M. D., & Bernhard, W. A. (2008). Mechanisms of direct radiation damage to DNA. In M. Spotheim-Maurizot, M. Mostafavi, T. Douki, & J. Belloni (Eds.), Mechanisms of direct radiation damage to DNA. In radiation chemistry from basics to applications in material and life sciences (p. 191). Cedex A, France: EDP Sciences.

    Google Scholar 

  • Sevilla, M. D., Becker, D., Yan, M., & Summerfield, S. R. (1991). Relative abundances of primary ion radicals in γ-irradiated DNA: Cytosine vs. thymine anions and guanine vs. adenine cations. The Journal of Physical Chemistry, 95, 3409.

    Google Scholar 

  • Sevilla, M. D., Besler, B., & Colson, A. O. (1994). Comment on “electron attachment to uracil. Theoretical ab Initio study. ” The Journal of Physical Chemistry, 98, 2215.

    Google Scholar 

  • Sevilla, M. D., Besler, B., & Colson, A. O. (1995). Ab initio molecular orbital calculations of DNA radical ions. 5. Scaling of calculated electron affinities and ionization potentials to experimental values. The Journal of Physical Chemistry, 99, 1060.

    Google Scholar 

  • Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., et al. (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 8, 3172.

    CAS  Google Scholar 

  • Shukla, L. I., Pazdro, R., Huang, J., DeVreugd, C., Becker, D., & Sevilla, M. D. (2004). The formation of DNA sugar radicals from photoexcitation of guanine cation radicals. Radiation Research, 161, 582.

    CAS  Google Scholar 

  • Shukla, L. I., Pazdro, R., Becker, D., & Sevilla, M. D. (2005). Sugar radicals in DNA: Isolation of neutral radicals in gamma-irradiated DNA by hole and electron scavenging. Radiation Research, 163, 591.

    CAS  Google Scholar 

  • Simons, J. (2006). How do low-energy (0. 1–2 eV) electrons cause DNA-strand breaks? Accounts of Chemical Research, 39, 772.

    Google Scholar 

  • Simons, J. (2008). Molecular anions. The Journal of Physical Chemistry A, 112, 6401.

    CAS  Google Scholar 

  • Simons, J., & Jordan, K. D. (1987). Ab Initio electronic structure of anions. Chemical Reviews, 87, 535.

    CAS  Google Scholar 

  • Sobolewski, A. L., & Domcke, W. (2002). On the mechanism of nonradiative decay of DNA bases: Ab initio and TDDFT results for the excited states of 9H-adenine. European PhysicalJournal D: Atomic, Molecular, Optical and Plasma Physics, 20, 369.

    CAS  Google Scholar 

  • Solomun, T., & Skalicky, T. (2008). The interaction of a protein–DNA surface complex with low-energy electrons. Chemical Physics Letters, 453, 101.

    CAS  Google Scholar 

  • Solomun, T., Seitz, H., & Sturm, H. (2009) . DNA damage by low-energy electron impact: Dependence on guanine content. The Journal of Physical Chemistry B, 113, 11557.

    CAS  Google Scholar 

  • Staiey, S. W., & Strnad, J. T. (1994). Calculation of the energies of π  negative ion resonance states by the use of Koopmans’ theorem. The Journal of Physical Chemistry, 98, 116.

    Google Scholar 

  • Steenken, S., & Jovanovic, S. V. (1997). How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. Journal of the American Chemical Society, 119, 617.

    CAS  Google Scholar 

  • Sulzer, P., Ptasińska, S., Zappa, F., Mielewska, B., Milosavljevic, A. R., Scheier, P., et al. (2006). Dissociative electron attachment to furan, tetrahydrofuran, and fructose. The Journal of Chemical Physics, 125, 044304.

    Google Scholar 

  • Svozil, D., Frigato, T., Havlas, Z., & Jungwirth, P. (2005). Ab initio electronic structure of thymine anions. Physical Chemistry Chemical Physics, 7, 840.

    CAS  Google Scholar 

  • Swarts, S. G., Sevilla, M. D., Becker, D., Tokar, C. J., & Wheeler, K. T. (1992). Radiation-induced DNA damage as a function of hydration. I. Release of unaltered bases. Radiation Research, 129, 333.

    Google Scholar 

  • Swiderek, P. (2006). Fundamental processes in radiation damage of DNA. Angewandte Chemie International Edition, 45, 4056.

    CAS  Google Scholar 

  • Takayanagi, T., Asakura, T., & Motegi, H. (2009). Theoretical study on the mechanism of low-energy dissociative electron attachment for uracil. The Journal of Physical Chemistry A, 113, 4795.

    CAS  Google Scholar 

  • Tonzani, S., & Greene, C. H. (2006a). Low-energy electron scattering from DNA and RNA bases: Shape resonances and radiation damage. The Journal of Chemical Physics, 124, 054312.

    Google Scholar 

  • Tonzani, S., & Greene, C. H. (2006b). Radiation damage to DNA: Electron scattering from the backbone subunits. The Journal of Chemical Physics, 125, 094504.

    Google Scholar 

  • Vera, D. M. A., & Pierini, A. B. (2004). Species with negative electron affinity and standard DFT methods. Physical Chemistry Chemical Physics, 6, 2899.

    CAS  Google Scholar 

  • von Sonntag, C. (1987). The chemical basis of radiation biology. London: Taylor and Francis.

    Google Scholar 

  • von Sonntag, C. (1991). The chemistry of free-radical-mediated DNA damage. In W. A. Glass & M. N. Varma (Eds.), Physical and chemical mechanisms in molecular radiation biology (p. 287). New York: Plenum.

    Google Scholar 

  • Wagenknecht, H. A. (Ed.) (2005). Charge transfer in DNA. From mechanism to application. New York: Wiley-VCH, Verlag GmbH.

    Google Scholar 

  • Wang, C. R., Nguyen, J., & Lu, Q. B. (2009). Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: A new molecular mechanism for reductive DNA damage. Journal of the American Chemical Society, 131, 11320.

    CAS  Google Scholar 

  • Wesolowski, S. S., Leininger, M. L., Pentchev, P. N., & Schaefer, H. F. (2001). Electron affinities of the DNA and RNA bases. Journal of the American Chemical Society, 123, 4023.

    CAS  Google Scholar 

  • Wetmore, S. D., Boyd, R. J., & Eriksson, L. A. (2000). Electron affinities and ionization potentials of nucleotide bases. Chemical Physics Letters, 322, 129.

    CAS  Google Scholar 

  • Wetzel, D. M., & Brauman, J. I. (1987). Electron photodetachment spectroscopy of trapped negative ions. Chemical Reviews, 87, 607.

    CAS  Google Scholar 

  • Winstead, C., & McKoy, V. (2006). Interaction of low-energy electrons with the purine bases, nucleosides, and nucleotides of DNA. The Journal of Chemical Physics, 125, 244302.

    Google Scholar 

  • Winstead, C., & McKoy, V. (2008). Resonant interactions of slow electrons with DNA constituents. Radiation Physics and Chemistry, 77, 1258.

    CAS  Google Scholar 

  • Xie, H. J., Wu, R. B., Xia, F., & Cao, Z. X. (2008). Effects of electron attachment on C-5-O-5 and C-1-N-1 bond cleavages of pyrimidine nucleotides: A theoretical study. Journal of Computational Chemistry, 29, 2025.

    CAS  Google Scholar 

  • Xi, L., Sevilla, M. D., & Sanche, L. (2003). Density functional theory studies of electron interaction with DNA: Can zero eV electrons induce strand breaks? Journal of the American Chemical Society, 125, 13668.

    Google Scholar 

  • Xi, L., Sanche, L., & Sevilla, M. D. (2006). Base release in nucleosides induced by low-energy electrons: A DFT study. Radiation Research, 165, 721.

    Google Scholar 

  • Yalunin, S., & Leble, S. B. (2007). Multiple-scattering and electron–uracil collisions at low energies. European Physical Journal, 144, 115.

    Google Scholar 

  • Yang, X., Wang, X. B., Vorpagel, E. R., & Wang, L. S. (2004). Direct experimental observation of the low ionization potentials of guanine in free oligonucleotides by using photoelectron spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 101, 17588.

    CAS  Google Scholar 

  • Yokoya, A., Shikazono, N., Fujii, K., Urushibara, A., Akamatsu, K., & Watanabe, R. (2008). DNA damage induced by the direct effect of radiation. Radiation Physics and Chemistry, 77, 1280.

    CAS  Google Scholar 

  • Younkin, J. M., Smith, L. J., & Compton, R. N. (1976). Semi-empirical calculations of p-electron affinities for some conjugated organic molecules. Theoretica Chimica Acta, 41, 157.

    CAS  Google Scholar 

  • Zewail, A. H. (2000). Femtochemistry: Atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry A, 104, 5660.

    CAS  Google Scholar 

  • Zhang, R. B., Zhang, K., & Eriksson, L. A. (2008). Theoretical studies of damage to 3-uridine monophosphate induced by electron attachment. Chemistry A European Journal, 14, 2850.

    CAS  Google Scholar 

  • Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41, 157.

    CAS  Google Scholar 

  • Zheng, Y., Cloutier, P., Hunting, D. J., Wagner, J. R., & Sanche, L. (2004). Glycosidic bond cleavage of thymidine by low-energy electrons. Journal of the American Chemical Society, 126, 1002.

    CAS  Google Scholar 

  • Zheng, Y., Cloutier, P., Hunting, D. J., Sanche, L., & Wagner, J. R. (2005). Chemical basis of DNA sugar-phosphate cleavage by low-energy electrons. Journal of the American Chemical Society, 127, 16592.

    CAS  Google Scholar 

  • Zheng, Y., Wagner, J. R., & Sanche, L. (2006). DNA damage induced by low-energy electrons: Electron transfer and diffraction. Physical Review Letters, 96, 208101.

    Google Scholar 

  • Zheng, Y., Hunting, D. J., Ayotte, P., & Sanche, L. (2008). Role of secondary low-energy electrons in the concomitant chemoradiation therapy of cancer. Physical Review Letters, 100, 198101.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH NCI under Grant R01CA045424. The authors thank Prof. P.D. Burrow for helpful discussions and advice. The authors are also grateful to the Arctic Region Supercomputing Center (ARSC) for generously providing the computational time to perform some of these calculations. Computational studies were also supported by a computational facilities grant NSF CHE-0722689.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Kumar, A., Sevilla, M.D. (2012). Low-Energy Electron (LEE)-Induced DNA Damage: Theoretical Approaches to Modeling Experiment. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_34

Download citation

Publish with us

Policies and ethics