Skip to main content

Protein Modeling

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

Proteins play a crucial role in biological processes, therefore, understanding their structure and function is very important. In this chapter we give an overview on computer models of proteins. First we treat both major experimental structure determination methods, X-ray diffraction and NMR spectroscopy. In subsequent sections computer modeling techniques as well as their application to the construction of explicit models are discussed. An overview on molecular mechanics and structure prediction is followed by an overview of molecular graphics methods of structure representation. Protein electrostatics and the concept of the solvent-accessible surface are treated in detail. We devote a special section to dynamics, where time scales, structures, and interactions are discussed. Protein interactions are especially important, so protein hydration, ligand binding, and protein–protein interactions receive special attention. Finally, computer modeling of enzyme mechanisms is discussed. We try to demonstrate that protein representation by computers arrived to a very high degree of sophistication and reliability; therefore, even lots of experimental studies make use of such models. A list with 80 up-to-date bibliographic references helps the reader to get informed on further details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, N. A., & McCammon, J. A. (2009). Electrostatic interactions. In J. Gu & P. E. Bourne (Eds.), Structural bioinformatics (2nd ed., p. 575). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Barabás, O., Pongrácz, V., Kovári, J., Wilmanns, M., & Vértessy, B. G. (2004). Structural insights into the catalytic mechanism of phosphate ester hydrolysis by dUTPase. The Journal of Biological Chemistry, 279, 42907.

    Article  Google Scholar 

  • Berente, I., Beke, T., & Náray-Szabó, G. (2007). Quantum mechanical studies on the existence of a trigonal bipyramidal phosphorane intermediate in enzymatic phosphate ester hydrolysis. Theoretical Chemistry Accounts, 118, 129.

    Article  CAS  Google Scholar 

  • Bernardi, F., Bottoni, A., De Vivo, M., Garavelli, M., Keserű, G. M., & Náray-Szabó, G. (2002). A hypothetical mechanism for HIV-1 integrase catalytic action: DFT modelling of a bio-mimetic environment. Chemical Physics Letters, 362, 1.

    Article  CAS  Google Scholar 

  • Bourgeois, D., & Royant, A. (2005). Advances in kinetic protein crystallography. Current Opinion in Structural Biology, 15, 538.

    Article  CAS  Google Scholar 

  • Brandén, C., & Tooze, J. (1999). Introduction to protein structure. New York: Garland.

    Google Scholar 

  • Bujnicki, J. M. (Ed.). (2009). Prediction of protein structures, functions, and interactions. Chichester: Wiley-Blackwell.

    Google Scholar 

  • Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. (2005). The amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668.

    Article  CAS  Google Scholar 

  • Cavalli, A., Salvatella, X., Dombson, C. M., & Vendruscolo, M. (2007). Protein structure determination from chemical shifts. Proceedings of the National Academy of Sciences of the United States of America, 104, 9615.

    Article  CAS  Google Scholar 

  • Cavanagh, J., Fairbrother, W. J., Palmer, A. G., III, Rance, M., & Skelton, N. J. (2007). Protein NMRspectroscopy, principles and practice (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Chayen, N. E. (Ed.). (2007). Protein crystallization strategies for structural genomics. Biotechnology Series. La Jolla: International University Line.

    Google Scholar 

  • Connolly, M. L. (1996). Molecular surfaces: A review. http://www.netsci.org/Science/Compchem/feature14.html. Retrieved 7 Mar 2011.

  • DelPhi. (2009). http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi. Retrieved 10 Mar 2011.

  • Ehrlich, L. P., & Wade, R. C. (2001). Protein-protein docking. Reviews in Computational Chemistry, 17, 61.

    Article  CAS  Google Scholar 

  • Elsasser, B., Valiev, M., & Weare, J. H. (2009). A dianionic phosphorane intermediate and transition states in an associative A(N)+D-N mechanism for the ribonucleaseA hydrolysis reaction. Journal of the American Chemical Society, 131, 3869.

    Article  CAS  Google Scholar 

  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica, D60, 2126.

    CAS  Google Scholar 

  • Fischer, D., Lin, S., Wolfson, H. L., & Nussinov, R. (1995). A geometry-based suite of molecular docking processes. Journal of Molecular Biology, 248, 459.

    CAS  Google Scholar 

  • Fiser, A., & Sali, A. (2003). Modeller: Generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461.

    Article  CAS  Google Scholar 

  • Fitter, J., Gutberlet, T., & Katsaras, J. (Eds.). (2006). Neutron scattering in biology, techniques and applications. Berlin: Springer.

    Google Scholar 

  • Florián, J., & Warshel, A. (1998). Phosphate ester hydrolysis in aqueous solution: Associative versus dissociative mechanisms. The Journal of Physical Chemistry B, 102, 719.

    Article  Google Scholar 

  • Fodor, K., Harmat, V., Kardos, J., Antal, J., Hetényi, C., Perczel, A., Szenthe, B., Gáspári, Z., Katona, G., & Gráf, L. (2005). Conformational adaptation of a canonical protease inhibitor upon its binding to the target protease increases specificity. FEBS Journal, 272, 167.

    Google Scholar 

  • Gao, J., & Truhlar, D. G. (2002). Quantum mechanical methods for enzyme kinetics. Annual Review of Physical Chemistry, 53, 467–505.

    Article  CAS  Google Scholar 

  • Gilson, M. K., & Honig, B. (1987). Calculation of electrostatic potentials in an enzyme active site. Nature, 330, 84.

    Article  CAS  Google Scholar 

  • Ginzinger, S. W., Gerick, F., Coles, M., & Heun, V. (2007). CheckShift: Automatic correction of inconsistent chemical shift referencing. Journal of Biomolecular NMR, 39, 223.

    Article  CAS  Google Scholar 

  • Goh, C. S., Milburn, D., & Gerstein, M. (2004). Conformational changes associated with protein-protein interactions. Current Opinion in Structural Biology, 14, 104.

    Article  CAS  Google Scholar 

  • Gray, J. J., Moughan, S. E., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., & Baker, D. (2003). Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. Journal of Molecular Biology, 331, 281.

    Article  CAS  Google Scholar 

  • GROMOS (2011). Dynamic modelling of molecular systems. https://www1.ethz.ch/igc/GROMOS/. Retrieved 10 Mar 2011.

  • Gsponer, J., Hopearuoho, H., Whittaker, S. B. M., Spence, G. R., Moore, G. R., Paci, E., Radford, S. E., & Vendruscolo, M. (2006). Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7. Proceedings of the National Academy of Sciences of the United States of America, 103, 99.

    Article  CAS  Google Scholar 

  • Guvencs, O., & MacKerrell, A. D., Jr. (2009). Computational evaluation of protein-small molecule binding. Current Opinion in Structural Biology, 19, 56.

    Article  Google Scholar 

  • Halgren, T. A. (1996). Merck molecular force field. I–V. Journal of Computational Chemistry, 17, 490.

    Google Scholar 

  • Harmat, V., & Náray-Szabó, G. (2009). Theoretical aspects of molecular recognition. Croatica Chemica Acta, 82, 277.

    CAS  Google Scholar 

  • Horsefield, R., & Neutze, R. (2006). Crystallization of lysozyme by the hanging drop method. http://www.csb.gu.se/rob/PDFs/Crystallisation_ Course_2006_Part-I.pdf. Retrieved 10 Mar 2011.

  • Hovmöller, S., Zhou, T., & Ohlson, T. (2002). Conformations of amino acids in proteins. Acta Crystallographica, D58, 768.

    Google Scholar 

  • Hu, H., & Yang, W. (2008). Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annual Review of Physical Chemistry, 59, 573.

    Article  CAS  Google Scholar 

  • Hu, Z., & Jiang, J. (2009). Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal. Journal of Computational Chemistry. doi:10.1002/jcc.21330.

    Google Scholar 

  • Hub, J. S., Grubmüller, H., & de Groot, B. L. (2009). Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? In E. Beitz (Ed.), Handbook of experimental pharmacology, Aquaporins (Vol. 190, p. 57). Berlin: Springer.

    Google Scholar 

  • Jarymowycz, V. A., & Stone, M. J. (2006). Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chemical Reviews, 106, 1624.

    Article  CAS  Google Scholar 

  • Jiao, D., Golubkov, P. A., Darden, T. A., & Ren, P. (2008). Calculation of protein–ligand binding free energy by using a polarizable potential. Proceedings of the National Academy of Sciences of the United States of America, 105, 6290.

    Article  CAS  Google Scholar 

  • Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., & Vakser, I. A. (1992). Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proceedings of the National Academy of Sciences of the United States of America, 89, 2195.

    Article  CAS  Google Scholar 

  • Kiss, R., Kovács, D., Tompa, P., & Perczel, A. (2008). Local structural preferences of calpastatin, the intrinsically unstructured protein inhibitor of calpain. Biochemistry, 47, 6936.

    Article  CAS  Google Scholar 

  • Klähn, M., Rosta, E., & Warshel, A. (2006). On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins. Journal of the American Chemical Society, 128, 15310.

    Article  Google Scholar 

  • Krieger, E., Nabuurs, S. B., & Vriend, G. (2003). Homology modeling. Methods of Biochemical Analysis, 44, 509.

    CAS  Google Scholar 

  • Lahiri, S. D., Zhang, G., Dunaway-Mariano, D., & Allen, K. N. (2003). The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction. Science, 299, 2067.

    Article  CAS  Google Scholar 

  • Lange, O. F., Lakomek, N. A., Fares, C., Schroder, G. F., Walter, K. F. A., Becker, S., Meiler, J., Grubmuller, H., Griesinger, C., & de Groot, B. L. (2008). Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science, 320, 1471

    Article  CAS  Google Scholar 

  • Lasilla, J. K., Zalatan, J. G., & Herschlag, G. (2011). Biological phosphoryl transfer reactions: Understanding mechanism and catalysis. Annual Review of Biochemistry, 80. doi:10.1146/annurev-biochem-060409-092741.

    Google Scholar 

  • Lesk, A. M., Bernstein, H. J., & Bernstein, F. C. (2008). Molecular graphics in structural biology. In M. Peitsch & T. Schwede (Eds.), Computational structural biology, methods andapplications (p. 729). Singapore: World Scientific Publishing.

    Chapter  Google Scholar 

  • Lin, M. S., Fawzi, N. L., & Head-Gordon, T. (2007). Hydrophobic potential of mean force as a solvation function for protein structure prediction. Structure, 15, 727.

    Article  CAS  Google Scholar 

  • Lindorff-Larsen, K., Best, R. B., Depristo, M. A., Dobson, C. M., & Vendruscolo, M. (2005). Simultaneous determination of protein structure and dynamics. Nature, 433, 128.

    Article  CAS  Google Scholar 

  • Luft, J. R., Collins, R. J., Fehrman, N. A., Lauricella, A. M., Veatch, C. K., & DeTitta, G. T. (2003). A deliberate approach to screening for initial crystallization conditions of biological macromolecules. Journal of Structural Biology, 142, 170.

    Article  CAS  Google Scholar 

  • MacKerell, A. D., Jr. (2004). Empirical force fields for biological macromolecules: Overview and issues, Journal of Computational Chemistry, 25, 1584.

    Article  CAS  Google Scholar 

  • Makarov, V., Pettitt, B. M., & Feig, M. (2002). Solvation and hydration of proteins and nucleic acids: A theoretical view of simulation and experiment. Accounts of Chemical Research, 35, 376.

    Article  CAS  Google Scholar 

  • Mancera, R. L. (2007). Molecular modeling of hydration in drug design. Current Opinion in Drug Discovery, 10, 275.

    CAS  Google Scholar 

  • Mehta, N., & Datta, S. N. (2008). Theoretical investigation of redox species in condensed phase. Journal of Chemical Sciences, 119, 501.

    Article  Google Scholar 

  • Menyhárd, D. K., & Náray-Szabó, G. (1999). Electrostatic effect on electron transfer at the active site of heme peroxidases: A comparative molecular orbital study on cytochrome C peroxidase and ascorbate peroxidase. Journal of Physical Chemistry B, 103, 227.

    Article  Google Scholar 

  • Mildvan, A. S. (1997). Mechanisms of signaling and related enzymes. Proteins: Structure, Function, and Genetics, 29, 401.

    Article  CAS  Google Scholar 

  • Mintseris, J., Wiehe, K., Pierce, B., Anderson, R., Chen, R., Janin, J., & Weng, Z. (2005). Protein-protein docking benchmark 2.0: An update. Proteins: Structure, Function, and Bioinformatics, 60, 214.

    Google Scholar 

  • Mohan, V., Gibbs, A. C., Cummings, M. D., Jaeger, E. P., & DesJarlais, R. L. (2005). Docking: Successes and challenges. Current Pharmaceutical Design, 11, 323.

    Article  CAS  Google Scholar 

  • Náray-Szabó, G., Fuxreiter, M., & Warshel, A. (1997). Electrostatic basis of enzyme catalysis. In G. Náray-Szabó & A. Warshel (Eds.), Computational approaches to biochemical reactivity. Dordrecht: Kluwer.

    Google Scholar 

  • Palmer, A. G., III, Kroenke, C. D., & Loria, J. P. (2001). Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymology, 339, 204.

    Article  CAS  Google Scholar 

  • Porollo, A., & Meller, J. (2007). Prediction-based fingerprints of protein interactions. Proteins: Structure Functional and Bioinformatics, 66, 630.

    Article  CAS  Google Scholar 

  • Protein Data Bank. (2011). PDB current holdings breakdown. http://www.rcsb.org/pdb/statistics/holdings.do. Retrieved 9 July 2011.

  • Redfield, C. (2004). NMR studies of partially folded molten globule states. In A. K. Downing (Ed.), Protein NMR techniques (2nd ed.). Totowa: Humana Press Inc.

    Google Scholar 

  • Richter, B., Gsponer, J., Várnai, P., Salvatella, X., & Vendruscolo, M. (2007). The MUMO (Minimal Under-Restraining Minimal Over-Restraining) method for the determination of native state ensembles of proteins. Journal of Bimolecular NMR, 37, 117.

    Article  CAS  Google Scholar 

  • Ritchie, D. W. (2008). Recent progress and future directions in protein-protein docking. Current Protein and Peptide Science, 9, 1.

    Article  CAS  Google Scholar 

  • Rosetta@home. (2011). http://boinc.bakerlab.org/rosetta/. Retrieved 10 Mar 2011.

  • Schmucki, R., Yokoyama, S., & Güntert, P. (2009). Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm. Journal of Biomolecular NMR, 43, 97.

    Article  CAS  Google Scholar 

  • Schorn, C., & Taylor, B. J. (2004). NMR-spectroscopy: Data acquisition (2nd ed.). New York: Wiley.

    Google Scholar 

  • Schwieters, C. D., Kuszewski, J. J., & Clore, G. M. (2006). Using Xplor-NIH for NMR molecular structure determination. Progress in Nuclear Magnetic Resonance Spectroscopy, 48, 47.

    Article  CAS  Google Scholar 

  • SWISS-MODEL. (2011). A fully automated protein structure homology-modeling server. http://swissmodel.expasy.org/. Retrieved 10 Mar 2011.

  • Szenthe, B., Gáspári, Z., Nagy, A., Perczel, A., & Gráf, L. (2004). Same fold with different mobility: Backbone dynamics of small protease inhibitors from the desert locust, Schistocerca Gregaria. Biochemistry, 43, 3376.

    Article  CAS  Google Scholar 

  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701.

    Article  Google Scholar 

  • Van Dijk, A. D. J., & Bonvin, A. M. J. J. (2006). Solvated docking: Introducing water into the modelling of biomolecular complexes. Bioinformatics, 22, 2340.

    Article  Google Scholar 

  • Volk, J., Herrmann, T., & Wüthrich, K. (2008). Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. Journal of Biomolecular NMR, 41, 127.

    Article  CAS  Google Scholar 

  • Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual Review of Biophysics & Biomolecular Structure, 30, 211.

    Article  CAS  Google Scholar 

  • Warshel, A. (2003). Computer simulations of enzyme catalysis: Methods, progress, and insights. Annual Review of Biophysics & Biomolecular Structure, 32, 425.

    Article  CAS  Google Scholar 

  • Wüthrich, K. (2002). NMR studies of structure and function of biological macromolecules. http://nobelprize.org/nobel_prizes/chemistry/laureates/2002/wutrich-lecture.pdf. Retrieved 10 Mar 2011.

  • Xu, D., & Guo, H. (2008). Ab Initio QM/MM studies of the phosphoryl transfer reaction catalyzed by PEP mutase suggest a dissociative metaphosphate transition state. Journal of Physical Chemistry B, 112, 4102.

    Article  CAS  Google Scholar 

  • Xu, Y., Xu, D., & Liang, J. (2007). Computational methods for protein structure prediction and modeling (Vols. 1–2). New York: Springer.

    Google Scholar 

  • Zsoldos, Z., Reida, D., Simona, A., Sadjada, S. B., & Johnson, A. P. (2007). eHiTS: A new fast, exhaustive flexible ligand docking system. Journal of Molecular Graphics and Modelling, 26, 198.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to our colleagues, Dr. Z. Gáspári, Dr. V. Harmat, and Ms. P. Rovó for important remarks on the manuscript and providing most of the figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Náray-Szabó, G., Perczel, A., Láng, A. (2012). Protein Modeling. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_30

Download citation

Publish with us

Policies and ethics