Skip to main content

Variation of the Surface to Bulk Contribution to Cluster Properties

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

Recent computer simulations have indicated that there is a linear relationship between the melting and the Curie temperatures for Ni n (n ≤ 201) clusters. In this chapter, it is argued that this result is a consequence of the fact that the surface and the core (bulk) contributions to the cluster properties vary with the cluster size in an analogous way. The universal aspect of this result is also discussed. Among the many interesting consequences resulting from this relationship is the intriguing possibility of the coexistence of melting and magnetization. As demonstrated, these conclusions have as their origin the major contribution coming from the melting/magnetization ratio arising from surface effects and appear to overshadow all other contributions. As a result, this can be quantified with approximate methods which are suitable for describing any major surface contribution to a cluster property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, P. W., & Hasegava, H. (1955). Considerations on double exchange. Physical Review, 100, 675.

    Article  CAS  Google Scholar 

  • Andriotis, A. N., Fthenakis, Z., & Menon, M. (2006). Theoretical study of the effect of temperature on the magnetism of transition metal clusters. Europhysics Letters, 76, 1088.

    Article  CAS  Google Scholar 

  • Andriotis, A. N., Fthenakis, Z. G., & Menon, M. (2007). Correlated variation of melting and curie temperatures of nickel clusters. Physical Review B, 75, 073413.

    Article  Google Scholar 

  • Andriotis, A. N., & Menon, M. (1998). Tight-binding molecular-dynamics study of ferromagnetic clusters. Physical Review B, 57, 10069.

    Article  CAS  Google Scholar 

  • Andriotis, A. N., & Menon, M. (2001). Greens function embedding approach to quantum conductivity of single wall carbon nanotubes. Journal of Chemical Physics, 115, 2737.

    Article  CAS  Google Scholar 

  • Andriotis, A. N., & Menon, M. (2004). Orbital magnetism: Pros and cons for enhancing the cluster magnetism. Physical Review Letters, 93, 026402.

    Article  Google Scholar 

  • Andriotis, A. N., Menon, M., Froudakis, G. E., Fthenakis, Z., & Lowther, J. E. (1998). A tight-binding molecular dynamics study of ni(m)si(n) binary clusters. Chemical Physics Letters, 292, 487.

    Article  CAS  Google Scholar 

  • Andriotis, A. N., Menon, M., Froudakis, G. E., & Lowther, J. E. (1999). Tight-binding molecular dynamics study of transition metal carbide clusters. Chemical Physics Letters, 301, 503.

    Article  CAS  Google Scholar 

  • Andriotis, A. N., Menon, M., & Froudakis, G. E. (2000). Contrasting bonding behaviors of 3-d transition metal atoms with graphite and c60. Physical Review B, 62, 9867.

    Article  CAS  Google Scholar 

  • Andriotis, A. N., Menon, M., & Srivastava, D. (2002). Transfer matrix approach to quantum conductivity calculations in single wall carbon nanotubes. Journal of Chemical Physics, 117, 2836.

    Article  CAS  Google Scholar 

  • Baletto, F., & Ferrando, R. (2005). Structural properties of nanoclusters: Energetic, thermodynamic and kinetic effects. Reviews of Modern Physics, 77, 371.

    Article  CAS  Google Scholar 

  • Bansman, J., Baker, S. H., Binns, C., Blackman, J. A., Bucher, J. P., Dorantes-Davila, J., Dupuis, V., Favre, L., Kechrakos, D., Kleibert, A., Meiwes-Broer, K. H., Pastor, G. M., Perez, A., Toulemonde, O., Trohidou, K. N., Tuaillon, J., & Xie, Y. (2005). Magnetic and structural properties of isolated and assembled clusters. Surface Science Reports, 56, 189.

    Article  Google Scholar 

  • Buffat, P., & Borel, J. P. (1976). Size effect on the melting temperature of gold particles. Physical Review A, 13, 2287.

    Article  CAS  Google Scholar 

  • Diep, H. T., Sawada, S., & Sugano, S. (1989). Melting and magnetic ordering in transition-metal microclusters. Physical Review B, 39, 9252.

    Article  Google Scholar 

  • Doye, J. P. K., & Calvo, F. (2001). Entropic effects on the size dependence of cluster structures. Physical Review Letters, 86, 3570.

    Article  CAS  Google Scholar 

  • Erkos, S. (2001). In D. Stauffer (Ed.), Annual reviews of computational physics (Vol. IX). World Scientific Publ.

    Google Scholar 

  • Fanourgakis, G. S., Farantos, S. C., Parneix, P., & Brechignac, P. (1997). An effective transition state for a complex cluster isomerization process: Comparison between anharmonic and harmonic models for \(m{g}^{+}a{r}_{12}\). Journal of Chemical Physics, 106, 4954.

    Article  CAS  Google Scholar 

  • Fthenakis, Z., Andriotis, A. N., & Menon, M. (unpublished).

    Google Scholar 

  • Fthenakis, Z., Andriotis, A. N., & Menon, M. (2003). Temperature evolution of structural and magnetic properties of transition metal clusters. Journal of Chemical Physics, 119, 10911.

    Article  CAS  Google Scholar 

  • Fthenakis, Z., Andriotis, A. N., & Menon, M. (2003). Understanding the structure of metal encapsulated si cages and nanotubes. Journal of Chemical Physics, 119, 10911.

    Article  CAS  Google Scholar 

  • Garcia-Rodeja, J., Rey, C., Gallego, L. J., & Alonso, J. A. (1994). Molecular-dynamics study of the structures, binding energies, and melting of clusters of fcc transition and noble metals using the voter and chen version of the embedded-atom model. Physical Review B, 49, 8495.

    Article  CAS  Google Scholar 

  • Garrigos, R., Cheyssac, P., & Kofman, R. (1989). Melting for lead particles of very small sizes: Influence of surface phenomena. Zeitschrift für Physik D, 12, 497.

    Article  CAS  Google Scholar 

  • Gerion, D., Hirt, A., Billas, I. M. L., Chatelain, A., & de Heer, W. A. (2000). Experimental specific heat of iron, cobalt, and nickel clusters studied in a molecular beam. Physical Review B, 62, 7491.

    Article  CAS  Google Scholar 

  • Gunes, B., & Erkoc, S. (2000). Melting and fragmentation of nickel nanparticles: Molecular-dynamics simulations. International Journal of Modern Physics, 11, 1567.

    Article  Google Scholar 

  • Harrison, W. (1980). Electronic structure and properties of solids. San Francisco: W. H. Freeman.

    Google Scholar 

  • Huang, H., Sun, C. Q., & Hing, P. (2000). Surface bond contraction and its effect on the nanometric sized lead zirconate titanate. Journal of Physics: Condensed Matter, 12, L127.

    CAS  Google Scholar 

  • Kato, M., & Kokubo, F. (1994). Partially antiferromagnetic state in the triangular hubbard model. Physical Review B, 49, 8864.

    Article  Google Scholar 

  • Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G., & Allen, L. H. (1996). Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Physical Review Letters, 77, 99.

    Article  CAS  Google Scholar 

  • Lathiotakis, N. N., Andriotis, A. N., Menon, M., & Connolly, J. (1996). Tight binding molecular dynamics study of ni clusters. Journal of Chemical Physics, 104, 992.

    Article  CAS  Google Scholar 

  • Lee, Y. J., Lee, E. K., Kim, S., & Nieminen, R. M. (2001). Effect of potential energy distribution on the melting of clusters. Physical Review Letters, 86, 999.

    Article  CAS  Google Scholar 

  • Menon, M., & Subbaswamy, K. R. (1997). Nonorthogonal tight-binding molecular-dynamics scheme for silicon with improved transferability. Physical Review B, 55, 9231.

    Article  CAS  Google Scholar 

  • Nayak, S. K., Khanna, S. N., Rao, B. K., & Jena, P. (1998). Thermodynamics of small nickel clusters. Journal of Physics Condensed Matter, 10, 10853.

    Article  CAS  Google Scholar 

  • Nose, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 81, 511.

    Article  CAS  Google Scholar 

  • Ojeda, M. A., Dorantes-Davila, J., & Pastor, G. (1999). Noncollinear cluster magnetism in the framework of the hubbard model. Physical Review B, 60, 6121.

    Article  CAS  Google Scholar 

  • Qi, Y., Cagin, T., Johnson, W. L., & Goddard, W. A. (2001). Melting and crystallization in ni nanoclusters: The mesoscale regime. Journal of Chemical Physics, 115, 385.

    Article  CAS  Google Scholar 

  • Rey, C., Gallego, L. J., Garcia-Rogeja, J., Alonso, J. A., & Iniguez, M. P. (1993). Molecular-dynamics study of the binding energy and melting of transition-metal clusters. Physical Review B, 48, 8253.

    Article  CAS  Google Scholar 

  • Schmidt, M., Kusche, R., Kronmuller, W., von Issendorff, B., & Haberland, H. (1997). Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms. Physical Review Letters, 79, 99.

    Article  CAS  Google Scholar 

  • Sun, D. Y., & Gong, X. G. (1998). Structural properties and glass transition in al n clusters. Physical Review B, 57, 4730.

    Article  CAS  Google Scholar 

  • Sutton, A. P., & Chen, J. (1990). Long-range finnis-sinclair potentials. Philosophical Magazine Letters, 61, 139.

    Article  Google Scholar 

  • Uhl, M., Sanrdatskii, L. M., & Kubler, J. (1994). Spin fluctuations in γ-fe and in fe 3 pt invar from local-density-functional calculations. Physical Review B, 50, 291.

    Article  CAS  Google Scholar 

  • Weerasinghe, S., & Amar, F. G. (1993). Absolute classical densities of states for very anharmonic systems and applications to the evaporation of rare gas clusters. Journal of Chemical Physics, 98, 4967.

    Article  CAS  Google Scholar 

  • Yang, C. C., & Jiang, Q. (2005). Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Materialia, 53, 3305.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work is supported by grants from US-DOE (DE-FG02-00ER45817 and DE-FG02-07ER46375).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Andriotis, A.N., Fthenakis, Z.G., Menon, M. (2012). Variation of the Surface to Bulk Contribution to Cluster Properties. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_25

Download citation

Publish with us

Policies and ethics