Skip to main content

Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures: Graphene, Fullerenes, Carbon Nanotubes, and Their Derivatives

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

This chapter provides information on various carbon allotropes, and in-depth details of structures, electronic and chemical properties of graphene, fullerenes, and single-walled carbon nanotubes (SWCNTs). We have given an overview of different computational methods that were employed to understand various properties of carbon nanostructures. Importance of application of computational methods in exploring different sizes of fullerenes and their isomers is given. The concept of isolated pentagon rule (IRP) in fullerene chemistry has been revealed. The computational and experimental studies involving Stone–Wales (SW) and vacancy defects in fullerene structures are discussed in this chapter. The relationship between the local curvature and the reactivity of the defect-free and defective fullerene and single-walled carbon nanotubes has been revealed. We reviewed the influence of different defects in graphene on hydrogen addition. The viability of hydrogen and fluorine atom additions on the external surface of the SWCNTs is revealed using computational techniques. We have briefly pointed out the current utilization of carbon nanostructures and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abanin, D. A., Lee, P. A., & Levitov, L. S. (2006). Spin-filtered edge states and quantum hall effect in graphene. Physical Review Letters, 96, 176803-1–176803-4.

    Google Scholar 

  • Achiba, Y., Kikuchi, K., Aihara, Y., Wakabayashi, Y., Miyake, Y., & Kainosho, M. (1995). In P. Bernier, D. S. Bethune, L. Y. Chiang, T. W. Ebbesen, R. M. Metzger, & J. W. Mintmire (Eds.), Higher fullerenes: Structure and properties (Materials research society symposium proceedings, Vol. 359, p. 3). Pittsburgh, PA: Materials Research Society.

    Google Scholar 

  • Achiba, Y., Kikuchi, K., Aihara, Y., Wakabayashi, T., Miyake, Y., & Kainosho, M. (1996). In W. Andreoni (Ed.), The chemical physics of fullerenes, 10 and 5 years later (p. 139). Dordrecht: Kluwer.

    Google Scholar 

  • Akdim, B., Kar, T., Duan, X., & Pachter, R. (2007). Density functional theory calculations of ozone adsorption on sidewall single-wall carbon nanotubes with Stone-Wales defects. Chemical Physics Letters, 445, 281–287.

    CAS  Google Scholar 

  • Amorim, R. G., Fazzio, A., Antonelli, A., Novaes, F. D., & da Silva, A. J. R. (2007). Divacancies in graphene and carbon nanotubes. Nano Letters, 7, 2459–2462.

    CAS  Google Scholar 

  • Amsharov, K. Y., & Jensen, M. (2008). A C78 Fullerene precursor: Toward the direct synthesis of higher fullerenes. Journal of Organic Chemistry, 73, 2931–2934.

    CAS  Google Scholar 

  • An, W., Gao, Y., Bulusu, S., & Zeng, X. C. (2005). Ab initio calculation of bowl, cage, and ring isomers of C20 and \({\mathrm{C}}_{20}^{-}\). Journal of Chemical Physics, 122, 204109-1–204109-8.

    Google Scholar 

  • Andzelm, J., Govind, N., & Maiti, A. (2006). Nanotube-based gas sensors – Role of structural defects. Chemical Physics Letters, 421, 58–62.

    CAS  Google Scholar 

  • Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I., & Hersam, M. C. (2006). Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology, 1, 60–65.

    CAS  Google Scholar 

  • Austin, S. J., Fowler, P. W., Manolopoulos, D. E., & Zerbetto, F. (1995). The Stone-Wales map for C60. Chemical Physics Letters, 235, 146–151.

    CAS  Google Scholar 

  • Avila, A. F., & Lacerda, G. S. R. (2008). Molecular mechanics applied to single-walled carbon nanotubes. Materials Research, 11, 325–333.

    CAS  Google Scholar 

  • Avouris, P., Chen, Z. H., & Perebeinos, V. (2007). Carbon-based electronics. Nature Nanotechnology, 2, 605–615.

    CAS  Google Scholar 

  • Bakry, R., Vallant, R. M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C. W., & Bonn, G. K. (2007). Medicinal applications of fullerenes. International Journal of Nanomedicine, 2, 639–649.

    CAS  Google Scholar 

  • Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907.

    CAS  Google Scholar 

  • Barth, W. E., & Lawton, R. G. (1966). Dibenzo[ghi, mno]fluoranthene. Journal of the American Chemical Society, 88, 380–381.

    CAS  Google Scholar 

  • Baughman, R. H., Zakhidov, A. A., & de Heer, W. A. (2002). Carbon nanotubes-the route toward applications. Science, 297, 787–792.

    CAS  Google Scholar 

  • Beavers, C. M., Zuo, T., Duchamp, J. C., Harich, K., Dorn, H. C., Olmstead, M. M., & Balch, A. L. (2006). Tb3N@C84: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. Journal of the American Chemical Society, 128, 11352–11353.

    CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652.

    Google Scholar 

  • Becker, L., Bada, J. L., Winans, R. E., Hunt, J. E., Bunch, T. E., & French, B. M. (1994). Fullerenes in the 1.85-billion-year-old Sudbury impact structure. Science, 265, 642–645.

    Google Scholar 

  • Berthe, M., Yoshida, S., Ebine, Y., Kanazawa, K., Okada, A., Taninaka, A., Takeuchi, O., Fukui, N., Shinohara, H., Suzuki, S., Sumitomo, K., Kobayashi, Y., Grandidier, B., Stievenard, D., & Shigekawa, H. (2007). Reversible defect engineering of single-walled carbon nanotubes using scanning tunneling microscopy. Nano Letters, 7, 3623–3627.

    CAS  Google Scholar 

  • Bethune, D. S., Klang, C.-H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605–607.

    CAS  Google Scholar 

  • Bettinger, H. F. (2004). Effects of finite carbon nanotube length on sidewall addition of fluorine atom and methylene. Organic Letters, 6, 731–734.

    CAS  Google Scholar 

  • Bettinger, H. F. (2005). The reactivity of defects at the sidewalls of single-walled carbon nanotubes: The Stone-Wales defect. The Journal of Physical Chemistry. B, 109, 6922–6924.

    CAS  Google Scholar 

  • Bettinger, H. F. (2006). Addition of carbenes to the sidewalls of single-walled carbon nanotubes. Chemistry - A European Journal, 12, 4372–4379.

    CAS  Google Scholar 

  • Bettinger, H. F., Yakobson, B. I., & Scuseria, G. E. (2003). Scratching the surface of Buckminsterfullerene: The barriers for Stone-Wales transformation through symmetric and asymmetric transition states. Journal of the American Chemical Society, 125, 5572–5580. and references therein.

    Google Scholar 

  • Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., & Novoselov, K. S. (2008). Graphene-based liquid crystal device. Nano Letters, 8, 1704–1708.

    Google Scholar 

  • Bosi, S., Ros, T. D., Spalluto, G., Balzarini, J., & Pratoa, M. (2003). Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 13, 4437–4440.

    CAS  Google Scholar 

  • Boukhvalov, D. W., & Katsnelson, M. I. (2008). Chemical functionalization of graphene with defects. Nano Letters, 8, 4373–4379.

    CAS  Google Scholar 

  • Boukhvalov, D. W., Katsnelson, M. I., & Lichtenstein, A. I. (2008). Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B, 77, 035427-1–035427-7.

    Google Scholar 

  • Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from graphene sheets. Science, 315, 490–493.

    CAS  Google Scholar 

  • Burda, C., Samia, A. C. S., Hathcock, D. J., Huang, H., & Yang, S. (2002). Experimental evidence for the photoisomerization of higher fullerenes. Journal of the American Chemical Society, 124, 12400–12401.

    CAS  Google Scholar 

  • Buseck, P. R., Tsipursky, S. J., & Hettich, R. (1992). Fullerenes from the geological environment. Science, 257, 215–217.

    CAS  Google Scholar 

  • Cabrera-Sanfelix, P., & Darling, G. R. (2007). Dissociative adsorption of water at vacancy defects in graphite. The Journal of Physical Chemistry C, 111, 18258–18263.

    CAS  Google Scholar 

  • Calaminici, P., Geudtner, G., & Koster, A. M. (2009). First-principle calculations of large fullerenes. Journal of Chemical Theory and Computation, 5, 29–32.

    CAS  Google Scholar 

  • Carlson, J. M., & Scheffler, M. (2006). Structural, electronic, and chemical properties of nanoporous carbon. Physical Review Letters, 96, 046806-1–046806-4.

    Google Scholar 

  • Carpio, A., Bonilla, L. L., de Juan, F., & Vozmediano, M. A. H. (2008). Dislocations in graphene. New Journal of Physics, 10, 053021-1–053021-13.

    Google Scholar 

  • Chakraborty, A. K., Woolley, R. A. J., Butenko, Y. V., Dhanak, V. R., Siller, L., & Hunt, M. R. C. (2007). A photoelectron spectroscopy study of ion-irradiation induced defects in single-wall carbon nanotubes. Carbon, 45, 2744–2750.

    CAS  Google Scholar 

  • Chandra, N., Namilae, S., & Shet, C. (2004). Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B, 69, 094101-1–094101-12.

    Google Scholar 

  • Charlier, J.-C. (2002). Defects in carbon nanotubes. Accounts of Chemical Research, 35, 1063–1069.

    CAS  Google Scholar 

  • Charlier, J.-C., Ebbesen, T. W., & Lambin, Ph. (1996). Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Physical Review B, 53, 11108–11113.

    CAS  Google Scholar 

  • Chaur, M. N., Valencia, R., Rodríguez-Fortea, A., Poblet, J. M., & Echegoyen, L. (2009a). Trimetallic nitride endohedral fullerenes: Experimental and theoretical evidence for the \({\mathrm{M}}_{3}{\mathrm{N}}^{6+}@{\mathrm{C}}_{2n}^{6-}\) model. Angewandte Chemie, International Edition, 48, 1425–1428.

    CAS  Google Scholar 

  • Chaur, M. N., Melin, F., Ortiz, A. L., & Echegoyen, L. (2009b). Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angewandte Chemie, International Edition, 48, 7514–7538.

    CAS  Google Scholar 

  • Chen, Z. (2004). The smaller fullerene C50, isolated as C50Cl10. Angewandte Chemie, International Edition, 43, 4690–4691.

    CAS  Google Scholar 

  • Chen, Z., Thiel, W., & Hirsch, A. (2003). Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: Dependence on the carbon-atom pyramidalization. Chemical Physics and Physical Chemistry, 4, 93–97.

    CAS  Google Scholar 

  • Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G., & Cohen, M. L. (1996). Pure carbon nanoscale devices: Nanotube heterojunctions. Physical Review Letters, 76, 971–974.

    CAS  Google Scholar 

  • Cho, E., Shin, S., & Yoon, Y.-G. (2008). First-principles studies on carbon nanotubes functionalized with azomethine ylides. The Journal of Physical Chemistry C, 112, 11667–11672.

    CAS  Google Scholar 

  • Christian, J. F., Wan, Z., & Anderson, S. L. (1992). O++C60 â‹… C60O+ production and decomposition, charge transfer, and formation of C59O+. Dopeyball or [CO@C58 +]. Chemical Physics Letters, 199, 373–378.

    Google Scholar 

  • Chun, H., Hahm, M. G., Homma, Y., Meritz, R., Kuramochi, K., Menon, L., Ci, L., Ajayan, P. M., & Jung, Y. J. (2009). Engineering low-aspect ratio carbon nanostructures: Nanocups, nanorings, and nanocontainers. ACS Nano, 3, 1274–1278.

    CAS  Google Scholar 

  • Cioslowski, J., Rao, N., & Moncrieff, D. (2002). Electronic structures and energetics of [5,5] and [9,0] single-walled carbon nanotubes. Journal of the American Chemical Society, 124, 8485–8489.

    CAS  Google Scholar 

  • Close, G. F., Yasuda, S., Paul, B., Fujita, S., & Wong, H. S. P. (2008). A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Letters, 8, 706–709.

    CAS  Google Scholar 

  • Cohen, M. L. (1993). Predicting useful materials. Science, 261, 307–308.

    CAS  Google Scholar 

  • Crassous, J., Rivera, J., Fender, N. S., Shu, L., Echegoyen, L., Thilgen, C., Herrmann, A., & Diederich, F. (1999). Chemistry of C84: Separation of three constitutional isomers and optical resolution of D2-C84 by using the Bingel-retro-Bingel strategy. Angewandte Chemie, International Edition, 38, 1613–1617.

    CAS  Google Scholar 

  • Cuesta, I. G., Pedersen, T. B., Koch, H., & de Meras, A. S. (2006). Carbon nanorings: A challenge to theoretical chemistry. Chemical Physics and Physical Chemistry, 7, 2503–2507.

    Google Scholar 

  • Cyranski, M. K., Howard, S. T., & Chodkiewicz, M. L. (2004). Bond energy, aromatic stabilization energy and strain in IPR fullerenes. Chemical Communications, 2458–2459.

    Google Scholar 

  • Dai, H. (2002). Carbon nanotubes: Synthesis, integration, and properties. Accounts of Chemical Research, 35, 1035–1044.

    CAS  Google Scholar 

  • David, W. I. F., Ibberson, R. M., Matthewman, J. C., Prassides, K., Dennis, T. J. S., Hare, J. P., Kroto, H. W., Taylor, R., & Walton, D. R. M. (1991). Crystal structure and bonding of ordered C60. Nature, 353, 147–149.

    CAS  Google Scholar 

  • David, V. P., Lin, X., Zhang, H., Liu, S., & Kappes, M. M. (1992). Transmission electron microscopy of C70 single crystals at room temperature. Journal of Materials Research, 7, 2440–2446.

    Google Scholar 

  • Deng, J.-P., Ju, D.-D., Her, G.-R., Mou, C.-Y., Chen, C.-J., Lin, Y.-Y., & Han, C.-C. (1993). Odd-numbered fullerene fragment ions from C60 oxides. Journal of Physical Chemistry, 97, 11575–11577.

    CAS  Google Scholar 

  • Denis, P. A., Iribarne, F., & Faccio, R. (2009). Hydrogenated double wall carbon nanotubes. Journal of Chemical Physics, 130, 194704-1– 194704-10.

    Google Scholar 

  • Dennis, T. J. S., & Shinohara, H. (1998). Isolation and characterisation of the two major isomers of [84]fullerene (C84). Chemical Communications, 619–620.

    Google Scholar 

  • Dereli, G., & Sungu, B. (2007). Temperature dependence of the tensile properties of single-walled carbon nanotubes: O(N) tight-binding molecular-dynamics simulations. Physical Review B, 75, 184104-1–184104-6.

    Google Scholar 

  • Dewar, M. J. S., & Thiel, W. (1977). Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, 99, 4899–4907.

    Google Scholar 

  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.

    Google Scholar 

  • Dewar, M. J. S., Jie, C., & Yu, J. (1993). SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron, 49, 5003–5038.

    CAS  Google Scholar 

  • Dhar, S., Liu, Z., Thomale, J., Dai, H., & Lippard, S. J. (2008). Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. Journal of the American Chemical Society, 130, 11467–11476.

    CAS  Google Scholar 

  • Diederich, F., Ettl, R., Rubin, Y., Whetten, R. L., Beck, R., Alvarez, M., Anz, S., Sensharma, D., Wudl, F., Khemani, K. C., & Koch, A. (1991a). The higher fullerenes: Isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h -C70. Science, 252, 548–551.

    CAS  Google Scholar 

  • Diederich, F., Whetten, R. L., Thilgen, C., Ettl, R., Chao, I., & Alvarez, M. M. (1991b). Fullerene isomerism: Isolation of C2v,-C78 and D3-C78. Science, 254, 1768–1770.

    CAS  Google Scholar 

  • Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., & Heben, M. J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377–379.

    CAS  Google Scholar 

  • Dinadayalane, T. C., & Leszczynski, J. (2007a). Toward nanomaterials: Structural, energetic and reactivity aspects of single-walled carbon nanotubes. In P. B. Balbuena & J. M. Seminario (Eds.), Nanomaterials: Design and simulation (Theoretical and computational chemistry, Vol. 18, pp. 167–199). Amsterdam: Elsevier.

    Google Scholar 

  • Dinadayalane, T. C., & Leszczynski, J. (2007b). StoneWales defects with two different orientations in (5, 5) single-walled carbon nanotubes: A theoretical study. Chemical Physics Letters, 434, 86–91.

    CAS  Google Scholar 

  • Dinadayalane, T. C., & Leszczynski, J. (2009). Toward understanding of hydrogen storage in single-walled carbon nanotubes by chemisorption mechanism. In J. Leszczynski & M. K. Shukla (Eds.), Practical aspects of computational chemistry: Methods, concepts and applications (pp. 297–313). Netherlands: Springer.

    Google Scholar 

  • Dinadayalane, T. C., & Sastry, G. N. (2001). Synthetic strategies toward buckybowls and C60: Benzannulation is remarkably facile compared to cyclopentannulation. Tetrahedron Letters, 42, 6421–6423.

    CAS  Google Scholar 

  • Dinadayalane, T. C., & Sastry, G. N. (2002a). Structure-energy relationships in curved polycyclic aromatic hydrocarbons: Study of benzocorannulenes. Journal of Organic Chemistry, 67, 4605–4607.

    CAS  Google Scholar 

  • Dinadayalane, T. C., & Sastry, G. N. (2002b). An assessment of semiempirical (MNDO, AM1 and PM3) methods to model buckybowls. Journal of Molecular Structure (Theochem), 579, 63–72.

    CAS  Google Scholar 

  • Dinadayalane, T. C., & Sastry, G. N. (2003). Isolated pentagon rule in buckybowls: A computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedron, 59, 8347–8351.

    CAS  Google Scholar 

  • Dinadayalane, T. C., Priyakumar, U. D., & Sastry, G. N. (2001). Theoretical studies on the effect of sequential benzannulation to corannulene. Journal of Molecular Structure (Theochem), 543, 1–10.

    CAS  Google Scholar 

  • Dinadayalane, T. C., Priyakumar, U. D., & Sastry, G. N. (2002). Ring closure synthetic strategies toward buckybowls: Benzannulation versus cyclopentannulation. Journal of the Chemical Society, Perkin Transactions 2, 94–101.

    Google Scholar 

  • Dinadayalane, T. C., Deepa, S., & Sastry, G. N. (2003). Is peri hydrogen repulsion responsible for flattening buckybowls? The effect of ring annelation to the rim of corannulene. Tetrahedron Letters, 44, 4527–4529.

    CAS  Google Scholar 

  • Dinadayalane, T. C., Deepa, S., Reddy, A. S., & Sastry, G. N. (2004). Density functional theory study on the effect of substitution and ring annelation to the rim of corannulene. Journal of Organic Chemistry, 69, 8111–8114.

    CAS  Google Scholar 

  • Dinadayalane, T. C., Gorb, L., Simeon, T., & Dodziuk, H. (2007a). Cumulative p-p interaction triggers unusually high stabilization of linear hydrocarbons inside the single-walled carbon nanotube. International Journal of Quantum Chemistry, 107, 2204–2210.

    CAS  Google Scholar 

  • Dinadayalane, T. C., Kaczmarek, A., Lukaszewicz, J., & Leszczynski, J. (2007b). Chemisorption of hydrogen atoms on the sidewalls of armchair single-walled carbon nanotubes. The Journal of Physical Chemistry C, 111, 7376–7383.

    CAS  Google Scholar 

  • Ding, F. (2005). Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end. Physical Review B, 72, 245409-1–245409-7.

    Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: Their properties and applications. California: Academic.

    Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., & Avouris, Ph. (Eds.). (2001). Carbon nanotubes: Synthesis, structure, properties, and applications. Berlin: Springer.

    Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A. G. S., Pimenta, M. A., & Saito, R. (2002). Single nanotube Raman spectroscopy. Accounts of Chemical Research, 35, 1070–1078.

    CAS  Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 47–99.

    Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., & Jorio, A. (2007). Raman spectroscopy of carbon nanotubes in 1997 and 2007. The Journal of Physical Chemistry C, 111, 17887–17893.

    CAS  Google Scholar 

  • Dulap, B. I., & Zope, R. R. (2006). Efficient quantum-chemical geometry optimization and the structure of large icosahedral fullerenes. Chemical Physics Letters, 422, 451–454.

    Google Scholar 

  • Dunlap, B. I., Brenner, D. W., Mintmire, J. W., Mowrey, R. C., & White, C. T. (1991). Local density functional electronic structures of three stable icosahedral fullerenes. Journal of Physical Chemistry, 95, 8737–8741.

    CAS  Google Scholar 

  • Duplock, E. J., Scheffler, M., & Lindan, P. J. D. (2004). Hallmark of perfect graphene. Physical Review Letters, 92, 225502-1–225502-4.

    Google Scholar 

  • Eggen, B. R., Heggie, M. I., Jungnickel, G., Latham, C. D., Jones, R., & Briddon, P. R. (1996). Autocatalysis during fullerene growth. Science, 272, 87–89.

    CAS  Google Scholar 

  • Ekinci, K. L., Huang, X. M. H., & Roukes, M. L. (2004). Ultrasensitive nanoelectromechanical mass detection. Applied Physics Letters, 84, 4469–4471.

    CAS  Google Scholar 

  • Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., & Novoselov, K. S. (2009). Control of graphenes properties by reversible hydrogenation: Evidence for graphane. Science, 323, 610–613.

    CAS  Google Scholar 

  • Ertekin, E., Chrzan, D. C., & Daw, M. S. (2009). Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene. Physical Review B, 79, 155421-1–155421-17.

    Google Scholar 

  • Esquivel, E. V., & Murr, L. E. (2004). A TEM analysis of nanoparticulates in a polar ice core. Materials Characterization, 52, 15–25.

    CAS  Google Scholar 

  • Feng, X., Irle, S., Witek, H., Morokuma, K., Vidic, R., & Borguet, E. (2005). Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. Journal of the American Chemical Society, 127, 10533–10538.

    CAS  Google Scholar 

  • Fischer, J. E., Heiney, P. A., McGhie, A. R., Romanow, W. J., Denenstein, A. M., McCauley, J. P., Jr., & Smith, A. B., III. (1991). Compressibility of solid C60. Science, 252, 1288–1290.

    Google Scholar 

  • Fowler, P. W., & Heine, T. (2001). Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation. Journal of the Chemical Society, Perkin Transactions 2, 487–490.

    Google Scholar 

  • Fowler, P. W., & Manolopoulos, D. E. (1995). An atlas of fullerenes. New York: Oxford University Press.

    Google Scholar 

  • Frisch, M. J., et al. (2003). Gaussian 03, revision E.1. Pittsburg, PA: Gaussian, Inc.

    Google Scholar 

  • Fu, W., Xu, L., Azurmendi, H., Ge, J., Fuhrer, T., Zuo, T., Reid, J., Shu, C., Harich, K., & Dorn, H. C. (2009). 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40–43). Journal of the American Chemical Society, 131, 11762–11769 and references therein.

    Google Scholar 

  • Galano, A. (2006). On the influence of diameter and length on the properties of armchair single-walled carbon nanotubes: A theoretical chemistry approach. Chemical Physics, 327, 159–170.

    CAS  Google Scholar 

  • Geim, A. K. (2009). Graphene: Status and prospects. Science, 324, 1530–1534.

    CAS  Google Scholar 

  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    CAS  Google Scholar 

  • Govind, N., Andzelm, J., & Maiti, A. (2008). Dissociation chemistry of gas molecules on carbon nanotubes Applications to chemical sensing. IEEE Sensors Journal, 8, 837–841.

    CAS  Google Scholar 

  • Gu, Z., Peng, H., Hauge, R. H., Smalley, R. E., & Margrave, J. L. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Letters, 2, 1009–1013.

    CAS  Google Scholar 

  • Gueorguiev, G. K., Pacheco, J. M., & Tomanek, D. (2004). Quantum size effects in the polarizability of carbon fullerenes. Physical Review Letters, 92, 215501-1–215501-4.

    Google Scholar 

  • Guo, T., Diener, M. D., Chai, Y., Alford, M. J., Haufler, R. E., McClure, S. M., Ohno, T., Weaver, J. H., Scuseria, G. E., & Smalley, R. E. (1992). Uranium stabilization of C28: A tetravalent fullerene. Science, 257, 1661–1663.

    CAS  Google Scholar 

  • Haddon, R. C. (1993). Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science, 261, 1545–1550.

    CAS  Google Scholar 

  • Haddon, R. C., & Scott, L. T. (1986). Ï€-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: Ï€-Orbital axis vector analysis. Pure and Applied Chemistry, 58, 137–142.

    CAS  Google Scholar 

  • Hamada, N., Sawada, S., & Oshiyama, A. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 68, 1579–1581.

    CAS  Google Scholar 

  • Harutyunyan, A. R., Chen, G., Paronyan, T. M., Pigos, E. M., Kuznetsov, O. A., Hewaparakrama, K., Kim, S. M., Zakharov, D., Stach, E. A., & Sumanasekera, G. U. (2009). Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science, 326, 116–120.

    CAS  Google Scholar 

  • He, H. Y., & Pan, B. C. (2009). Electronic structures and Raman features of a carbon nanobud. The Journal of Physical Chemistry C, 113, 20822–20826.

    CAS  Google Scholar 

  • Heath, J. R. (1991). ACS Symposium Series, 24, 1–23.

    Google Scholar 

  • Helden, G. v., Gotts, N. G., & Bowers, M. T. (1993). Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature, 363, 60–63.

    Google Scholar 

  • Hernández, E., Ordejón, P., & Terrones, H. (2001). Fullerene growth and the role of nonclassical isomers. Physical Review B, 63, 193403-1–193403-4.

    Google Scholar 

  • Heymann, D., Chibante, L. P. F., Brooks, R. R., Wolbach, W. S., & Smalley, R. E. (1994). Fullerenes in the cretaceous-tertiary boundary layer. Science, 265, 645–647.

    CAS  Google Scholar 

  • Heymann, D., Jenneskens, L. W., Jehlicka, J., Koper, C., & Vlietstra, E. (2003). Terrestrial and extraterrestrial fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures, 11, 333–370.

    CAS  Google Scholar 

  • Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., & Iijima, S. (2000). One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Physical Review Letters, 85, 5384–5387.

    CAS  Google Scholar 

  • Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angewandte Chemie, International Edition, 41, 1853–1859.

    CAS  Google Scholar 

  • Howard, J. B., Mckinnon, J. T., Makarovsky, Y., Lafleur, A. L., & Johnson, M. E. (1991). Fullerenes C60 and C70 in flames. Nature, 352, 139–141.

    CAS  Google Scholar 

  • http://www.nndc.bnl.gov/content/elements.html.

  • Hu, Y. H., & Ruckenstein, E. (2003). Ab initio quantum chemical calculations for fullerene cages with large holes. Journal of Chemical Physics, 119, 10073–10080.

    CAS  Google Scholar 

  • Hu, Y. H., & Ruckenstein, E. (2004). Quantum chemical density-functional theory calculations of the structures of defect C60 with four vacancies. Journal of Chemical Physics, 120, 7971–7975.

    CAS  Google Scholar 

  • Hudhomme, P., & Cousseau, J. (2007). Plastic solar cells using fullerene derivaties in the photoactive layer. In F. Langa & J.-F. Nierengarten (Eds.), Fullerenes: Principles and applications. London: Royal Society of Chemistry.

    Google Scholar 

  • Hutter, J. et al. Computer code CPMD, version 3.11 (copyright IBM Corp. 1990–2008; copyright für Festkörperforschung Stuttgart, Germany, 1997–2001), http://www.cpmd.org/.

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.

    CAS  Google Scholar 

  • Iijima, S. (2007). A career in carbon. Nature Nanotechnology, 2, 590–591.

    Google Scholar 

  • Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603–605.

    CAS  Google Scholar 

  • Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., & Takahashi, K. (1999). Nano-aggregates of single-walled graphitic carbon nano-horns. Chemical Physics Letters, 309, 165–170.

    CAS  Google Scholar 

  • Ioffe, I. N., Goryunkov, A. A., Tamm, N. B., Sidorov, L. N., Kemnitz, E., & Troyanov, S. I. (2009). Fusing pentagons in a fullerene cage by chlorination: IPR D2-C76 rearranges into non-IPR C76Cl24. Angewandte Chemie, International Edition, 48, 5904–5907.

    CAS  Google Scholar 

  • Jiang, H., Nasibulin, A. G., Brown, D. P., & Kauppinen, E. I. (2007). Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon, 45, 662–667.

    CAS  Google Scholar 

  • Jiang, D., Cooper, V. R., & Dai, S. (2009). Porous graphene as the ultimate membrane for gas separation. Nano Letters, 9, 4019–4024.

    CAS  Google Scholar 

  • Kaczmarek, A., Dinadayalane, T. C., Lukaszewicz, J., & Leszczynski, J. (2007). Effect of tube length on the chemisorptions of one and two hydrogen atoms on the sidewalls of (3,3) and (4,4) single-walled carbon nanotubes: A theoretical study. International Journal of Quantum Chemistry, 107, 2211–2219.

    CAS  Google Scholar 

  • Kadish, K. M., & Ruoff, R. S. (Eds.). (2002). Fullerene: Chemistry, physics and technology. New York: Wiley.

    Google Scholar 

  • Kagaku (1970). 25, pp. 854.

    Google Scholar 

  • Kar, T., Bettinger, H. F., Scheiner, S., & Roy, A. K. (2008). Noncovalent Ï€-Ï€ stacking and CH–π interactions of aromatics on the surface of single-wall carbon nanotubes: An MP2 study. The Journal of Physical Chemistry C, 112, 20070–20075.

    CAS  Google Scholar 

  • Karousis, N., Papi, R. M., Siskos, A., Vakalopoulou, P., Glezakos, P., Sarigiannis, Y., Stavropoulos, G., Kyriakidis, D. A., & Tagmatarchis, N. (2009). Peptidomimetic functionalized carbon nanotubes with antitrypsin activity. Carbon, 47, 3550–3558.

    CAS  Google Scholar 

  • Kessler, B., Bringer, A., Cramm, S., Schlebusch, C., Eberhardt, W., Suzuki, S., Achiba, Y., Esch, F., Barnaba, M., & Cocco, D. (1997). Evidence for incomplete charge transfer and La-derived states in the valence bands of endohedrally doped La@C82. Physical Review Letters, 79, 2289–2292.

    CAS  Google Scholar 

  • Kikuchi, K., Nakahara, N., Wakabayashi, T., Suzuki, S., Shiromaru, H., Miyake, Y., Saito, K., Ikemoto, I., Kainosho, M., & Achiba, Y. (1992a). NMR characterization of isomers of C78, C82 and C84 fullerenes. Nature, 357, 142–145.

    CAS  Google Scholar 

  • Kikuchi, K., Nakahara, N., Wakabayashi, T., Honda, M., Matsumiya, H., Moriwaki, T., Suzuki, S., Shiromaru, H., Saito, K., Yamauchi, K., Ikemoto, I., & Achiba, Y. (1992b). Isolation and identification of fullerene family: C76, C78, C82, C84, C90 and C96. Chemical Physics Letters, 188, 177–180.

    CAS  Google Scholar 

  • Kimura, T., Sugai, T., Shinohara, H., Goto, T., Tohji, K., & Matsuoka, I. (1995). Preferential arc-discharge production of higher fullerenes. Chemical Physics Letters, 246, 571–576.

    CAS  Google Scholar 

  • Klein, D. J., & Schmalz, T. G. (1990). In I. Hargittai (Ed.), Quasicrystals, networks, and molecules of fivefold symmetry (p. 239). New York: VCH.

    Google Scholar 

  • Knobel, R. G., & Cleland, A. N. (2003). Nanometre-scale displacement sensing using a single electron transistor. Nature, 424, 291–293.

    CAS  Google Scholar 

  • Kostov, M. K., Santiso, E. E., George, A. M., Gubbins, K. E., & Nardelli, M. B. (2005). Dissociation of water on defective carbon substrates. Physical Review Letters, 95, 136105-1–136105-4.

    Google Scholar 

  • Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, 347, 354–358.

    Google Scholar 

  • Kresse, G., & Furthmuller, J. (1996a). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169–11186.

    CAS  Google Scholar 

  • Kresse, G., & Furthmuller, J. (1996b). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15–50.

    CAS  Google Scholar 

  • Kroto, H. W. (1987). The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 329, 529–531.

    CAS  Google Scholar 

  • Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–163.

    CAS  Google Scholar 

  • Kubozono, Y., Maeda, H., Takabayashi, Y., Hiraoka, K., Nakai, T., Kashino, S., Emura, S., Ukita, S., & Sogabe, T. (1996). Extractions of Y@C60, Ba@C60, La@C60, Ce@C60, Pr@C60, Nd@C60, and Gd@C60 with aniline. Journal of the American Chemical Society, 118, 6998–6999.

    CAS  Google Scholar 

  • Launois, P., Chorro, M., Verberck, B., Albouy, P.-A., Rouziere, S., Colson, D., Foget, A., Noe, L., Kataura, H., Monthioux, M., & Cambedouzou, J. (2010). Transformation of C70 peapods into double walled carbon nanotubes. Carbon, 48, 89–98.

    CAS  Google Scholar 

  • Lavrik, N. V., & Datskos, P. G. (2003). Femtogram mass detection using photothermally actuated nanomechanical resonators. Applied Physics Letters, 82, 2697–2699.

    CAS  Google Scholar 

  • Lee, S. U., & Han, Y.-K. (2004). Structure and stability of the defect fullerene clusters of C60: C59, C58, and C57. Journal of Chemical Physics, 121, 3941–3942.

    CAS  Google Scholar 

  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.

    CAS  Google Scholar 

  • Lee, C., Kim, D., Jurecka, P., Tarakeshwar, P., Hobza, P., & Kim, K. S. (2007). Understanding of assembly phenomena by aromatic-aromatic interactions: Benzene dimer and the substituted systems. The Journal of Physical Chemistry. A, 111, 3446–3457.

    CAS  Google Scholar 

  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.

    CAS  Google Scholar 

  • Lherbier, A., Blase, X., Niquet, Y.-M., Triozon, N., & Roche, S. (2008). Charge transport in chemically doped 2D graphene. Physical Review Letters, 101, 036808-1–036808-4.

    Google Scholar 

  • Li, L., Reich, S., & Robertson, J. (2005). Defect energies of graphite: Density-functional calculations. Physical Review B, 72, 184109-1–184109-10.

    Google Scholar 

  • Li, J., Wu, C., & Guan, L. (2009a). Lithium insertion/extraction properties of nanocarbon materials. The Journal of Physical Chemistry C, 113, 18431–18435.

    CAS  Google Scholar 

  • Li, Y., Zhou, Z., Shen, P., & Chen, Z. (2009b). Structural and electronic properties of graphane nanoribbons. The Journal of Physical Chemistry C, 113, 15043–15045.

    CAS  Google Scholar 

  • Liu, J., Dai, H., Hafner, J. H., Colbert, D. T., Smalley, R. E., Tans, S. J., & Dekker, C. (1997). Fullerene ‘crop circles.’ Nature, 385, 780–781.

    CAS  Google Scholar 

  • Liu, Z., Sun, X., Nakayama-Ratchford, N., & Dai, H. (2007). Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 1, 50–56.

    Google Scholar 

  • Lopez-Urias, F., Terrones, M., & Terrones, H. (2003). Electronic properties of giant fullerenes and complex graphitic nanostructures with novel morphologies. Chemical Physics Letters, 381, 683–690.

    CAS  Google Scholar 

  • Lu, X., & Chen, Z. (2005). Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes ( < C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696.

    CAS  Google Scholar 

  • Lu, A. J., & Pan, B. C. (2004). Nature of single vacancy in achiral carbon nanotubes. Physical Review Letters, 92, 105504-1–105504-4.

    Google Scholar 

  • Lu, J., Zhang, X., & Zhao, X. (2000). Metal-cage hybridization in endohedral La@C60, Y@C60 and Sc@C60. Chemical Physics Letters, 332, 51–57.

    CAS  Google Scholar 

  • Lu, X., Chen, Z., Thiel, W., Schleyer, P. v. R., Huang, R., & Zheng, L. (2004). Properties of fullerene[50] and D 5h decachlorofullerene[50]: A computational study. Journal of the American Chemical Society, 126, 14871–14878.

    Google Scholar 

  • Lu, X., Chen, Z., & Schleyer, P. V. R. (2005). Are Stone-Wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes? Journal of the American Chemical Society, 127, 20–21.

    CAS  Google Scholar 

  • Lu, J., Yuan, D., Liu, J., Leng, W., & Kopley, T. E. (2008). Three dimensional single-walled carbon nanotubes. Nano Letters, 8, 3325–3329 and references therein.

    Google Scholar 

  • Ma, J., Alfe, D., Michaelides, A., & Wang, E. (2009). Stone-Wales defects in graphene and other planar sp2-bonded materials. Physical Review B, 80, 033407-1–033407-4.

    Google Scholar 

  • MacKenzie, K. J., See, C. H., Dunens, O. M., & Harris, A. T. (2008). Do single-walled carbon nanotubes occur naturally? Nature Nanotechnology, 3, 310.

    CAS  Google Scholar 

  • Manolopoulos, D. E., & Fowler, P. W. (1991). Structural proposals for endohedral metal-fullerene complexes. Chemical Physics Letters, 187, 1–7.

    CAS  Google Scholar 

  • Manolopoulos, D. E., & Fowler, P. W. (1992). Molecular graphs, point groups, and fullerenes. Journal of Chemical Physics, 96, 7603–7614.

    CAS  Google Scholar 

  • Maruyama, S., & Yamaguch, Y. (1998). A molecular dynamics demonstration of annealing to a perfect C60 structure. Chemical Physics Letters, 286, 343–349.

    CAS  Google Scholar 

  • Maseras, F., & Morokuma, K. (1995). IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. Journal of Computational Chemistry, 16, 1170–1179.

    CAS  Google Scholar 

  • Mashino, T., Nishikawa, D., Takahashi, K., Usui, N., Yamori, T., Seki, M., Endo, T., & Mochizuki, M. (2003). Antibacterial and antiproliferative activity of cationic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 13, 4395–4397.

    CAS  Google Scholar 

  • Matsuo, Y., Tahara, K., & Nakamura, E. (2003). Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes. Organic Letters, 5, 3181–3184.

    CAS  Google Scholar 

  • McKenzie, D. R., Davis, C. A., Cockayne, D. J. H., Muller, D. A., & Vassallo, A. M. (1992). The structure of the C70 molecule. Nature, 355, 622–624.

    CAS  Google Scholar 

  • Mehta, G., & Rao, H. S. P. (1998). Synthetic studies directed towards bucky-balls and bucky-bowls. Tetrahedron, 54, 13325–13370.

    CAS  Google Scholar 

  • Mehta, G., Panda, G., Yadav, R. D., & Kumar, K. R. (1997). A synthetic approach towards Pinakene, a C28H14 fragment of [70]-fullerene. Indian Journal of Chemistry (Section B), 36, 301–302.

    Google Scholar 

  • Melin, F., Chaur, M. N., Engmann, S., Elliott, B., Kumbhar, A., Athans, A. J., & Echegoyen, L. (2007). The large Nd3N@C2n (40 ≤ n ≤ 49) cluster fullerene family: Preferential templating of a C88 cage by a trimetallic nitride cluster. Angewandte Chemie, International Edition, 46, 9032–9035.

    CAS  Google Scholar 

  • Menon, M., & Srivastava, D. (1997). Carbon nanotube T junctions: Nanoscale metal-semiconductor-metal contact devices. Physical Review Letters, 79, 4453–4456.

    CAS  Google Scholar 

  • Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommine, M. F., & Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 8, 3582–3586.

    CAS  Google Scholar 

  • Mielke, S. L., Troya, D., Zhang, S., Li, J.-L., Xiao, S., Car, R., Ruoff, R. S., Schatz, G. C., & Belytschko, T. (2004). The role of vacancy defects and holes in the fracture of carbon nanotubes. Chemical Physics Letters, 390, 413–420.

    CAS  Google Scholar 

  • Mintmire, J. W., Dunlap, B. I., & White, C. T. (1992). Are fullerene tubules metallic? Physical Review Letters, 68, 631–634.

    CAS  Google Scholar 

  • Miwa, R. H., Martins, T. B., & Fazzio, A. (2008). Hydrogen adsorption on boron doped graphene: An ab initio study. Nanotechnology, 19, 155708-1–155708-7.

    Google Scholar 

  • Miyake, Y., Minami, T., Kikuchi, K., Kainosho, M., & Achiba, Y. (2000). Trends in structure and growth of higher fullerenes isomer structure of C86 and C88 −. Molecular Crystals and Liquid Crystals, 340, 553–558.

    CAS  Google Scholar 

  • Miyamoto, Y., Rubio, A., Berber, S., Yoon, M., & Tomanek, D. (2004). Spectroscopic characterization of Stone-Wales defects in nanotubes. Physical Review B, 69, 121413-1–121413-4.

    Google Scholar 

  • Mizorogi, N., & Aihara, J. (2003). PM3 localization energies for the isolated-pentagon isomers of the C84 fullerene. Physical Chemistry Chemical Physics, 5, 3368–3371.

    CAS  Google Scholar 

  • Monthioux, M., & Kuznetsov, V. L. (2006). Who should be given the credit for the discovery of carbon nanotubes? Carbon, 44, 1621–1623.

    CAS  Google Scholar 

  • Moro, L., Ruoff, R. S., Becker, C. H., Lorents, D. C., & Malhotra, R. (1993). Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry. Journal of Physical Chemistry, 97, 6801–6805.

    CAS  Google Scholar 

  • Morokuma, K., Wang, Q., & Vreven, T. (2006). Performance evaluation of the three-layer ONIOM method: Case study for a zwitterionic peptide. Journal of Chemical Theory and Computation, 2, 1317–1324.

    CAS  Google Scholar 

  • Murry, R. L., Strout, D. L., Odom, G. K., & Scuseria, G. E. (1993). Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. Nature, 366, 665–667.

    CAS  Google Scholar 

  • Nasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G., Hassanien, A., Shandakov, S. D., Lolli, G., Resasco, D. E., Choi, M., Tomanek, D., & Kauppinen, E. I. (2007a). A novel hybrid carbon material. Nature Nanotechnology, 2, 156–161.

    CAS  Google Scholar 

  • Nasibulin, A. G., Anisimov, A. S., Pikhitsa, P. V., Jiang, H., Brown, D. P., Choi, M., & Kauppinen, E. I. (2007b). Investigations of nanobud formation. Chemical Physics Letters, 446, 109–114.

    CAS  Google Scholar 

  • Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 109–162.

    Google Scholar 

  • Nikitin, A., Ogasawara, H., Mann, D., Denecke, R., Zhang, Z., Dai, H., Cho, K., & Nilsson, A. (2005). Hydrogenation of single-walled carbon nanotubes. Physical Review Letters, 95, 225507-1–225507-1.

    Google Scholar 

  • Nishidate, K., & Hasegawa, M. (2005). Energetics of lithium ion adsorption on defective carbon nanotubes. Physical Review B, 71, 245418-1–245418-6.

    Google Scholar 

  • Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E., & Haddon, R. C. (2002). Chemistry of single-walled carbon nanotubes. Accounts of Chemical Research, 35, 1105–1113.

    CAS  Google Scholar 

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.

    CAS  Google Scholar 

  • Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005a). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.

    CAS  Google Scholar 

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005b). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.

    CAS  Google Scholar 

  • Oberlin, A., Endo, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32, 335–349.

    CAS  Google Scholar 

  • O’Brien, S. C., Heath, J. R., Curl, R. F., & Smalley, R. E. (1988). Photophysics of buckminsterfullerene and other carbon cluster ions. Journal of Chemical Physics, 88, 220–230.

    Google Scholar 

  • Okada, S. (2007). Radial-breathing mode frequencies for nanotubes encapsulating fullerenes. Chemical Physics Letters, 438, 59–62.

    CAS  Google Scholar 

  • Okada, S., & Saito, S. (1996). Number of extractable fullerene isomers and speciality of C84. Chemical Physics Letters, 252, 94–100.

    CAS  Google Scholar 

  • Ormsby, J. L., & King, B. T. (2007). The regioselectivity of addition to carbon nanotube segments. Journal of Organic Chemistry, 72, 4035–4038.

    CAS  Google Scholar 

  • Osuna, S., Morera, J., Cases, M., Morokuma, K., & Sola, M. (2009). Diels-Alder reaction between cyclopentadiene and C60: An analysis of the performance of the ONIOM method for the study of chemical reactivity in fullerenes and nanotubes. The Journal of Physical Chemistry. A, 113, 9721–9726.

    CAS  Google Scholar 

  • Ouyang, M., Huang, J.-L., & Lieber, C. M. (2002). Fundamental electronic properties and applications of single-walled carbon nanotubes. Accounts of Chemical Research, 35, 1018–1025.

    CAS  Google Scholar 

  • Palkar, A., Kumbhar, A., Athans, A. J., & Echegoyen, L. (2008). Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chemistry of Materials, 20, 1685–1687.

    CAS  Google Scholar 

  • Park, S., Srivastava, D., & Cho, K. (2003). Generalized chemical reactivity of curved surfaces: Carbon nanotubes. Nano Letters, 3, 1273–1277.

    CAS  Google Scholar 

  • Park, S. S., Liu, D., & Hagelberg, F. (2005). Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules. The Journal of Physical Chemistry. A, 109, 8865–8873.

    CAS  Google Scholar 

  • Peng, X., Komatsu, N., Bhattacharya, S., Shimawaki, T., Aonuma, S., Kimura, T., & Osuka, A. (2007). Optically active single-walled carbon nanotubes. Nature Nanotechnology, 2, 361–365.

    CAS  Google Scholar 

  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.

    CAS  Google Scholar 

  • Pereira, V. M., Neto, A. H. C., & Peres, N. M. R. (2009). Tight-binding approach to uniaxial strain in graphene. Physical Review B, 80, 045401-1–045401-8.

    Google Scholar 

  • Pierson, H. O. (1993). Handbook of carbon, graphite, diamonds and fullerenes: Processing, properties and applications. New Jersey: Noyes Publications.

    Google Scholar 

  • Piskoti, C., Yarger, J., & Zettl, A. (1998). C36, a new carbon solid. Nature, 393, 771–774.

    CAS  Google Scholar 

  • Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., & Geim, A. K. (2008). Chaotic Dirac billiard in graphene quantum dots. Science, 320, 356–358.

    CAS  Google Scholar 

  • Poonjarernsilp, C., Sano, N., Tamon, H., & Charinpanitkul, T. (2009). A model of reaction field in gas-injected arc-in-water method to synthesize single-walled carbon nanohorns: Influence of water temperature. Journal of Applied Physics, 106, 104315-1–104315-7.

    Google Scholar 

  • Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Worth, J., Scott, L. T., Gelmont, M., Olevano, D., & Issendorff, B. v. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 407, 60–63.

    Google Scholar 

  • Priyakumar, U. D., & Sastry, G. N. (2001a). Heterobuckybowls: A theoretical study on the structure, bowl-to-bowl inversion barrier, bond length alternation, structure-inversion barrier relationship, stability, and synthetic feasibility. Journal of Organic Chemistry, 66, 6523–6530.

    CAS  Google Scholar 

  • Priyakumar, U. D., & Sastry, G. N. (2001b). Tailoring the curvature, bowl rigidity and stability of heterobuckybowls: Theoretical design of synthetic strategies towards heterosumanenes. Journal of Molecular Graphics and Modelling, 19, 266–269.

    CAS  Google Scholar 

  • Priyakumar, U. D., & Sastry, G. N. (2001c). Theory provides a clue to accomplish the synthesis of sumanene, C21H12, the prototypical C3v -buckybowl. Tetrahedron Letters, 42, 1379–1381.

    CAS  Google Scholar 

  • Qin, L.-C. (2007). Determination of the chiral indices (n, m) of carbon nanotubes by electron diffraction. Physical Chemistry Chemical Physics, 9, 31–48.

    CAS  Google Scholar 

  • Radushkevich, L. V., & Lukyanovich, V. M. (1952). O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn. Fisic. Chim., 26, 88–95.

    CAS  Google Scholar 

  • Rao, C. N. R., Voggu, R., & Govindaraj, A. (2009a). Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. Nanoscale, 1, 96–105.

    CAS  Google Scholar 

  • Rao, F., Li, T., & Wang, Y. (2009b). Growth of all-carbon single-walled carbon nanotubes from diamonds and fullerenes. Carbon, 47, 3580–3584.

    CAS  Google Scholar 

  • Robertson, D. H., Brenner, D. W., & Mintmire, J. W. (1992). Energetics of nanoscale graphitic tubules. Physical Review B, 45, 12592–12595.

    Google Scholar 

  • Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L., & Perkins, F. K. (2006). Role of defects in single-walled carbon nanotube chemical sensors. Nano Letters, 6, 1747–1751.

    CAS  Google Scholar 

  • Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8, 3137–3140.

    CAS  Google Scholar 

  • Rohlfing, E. A., Cox, D. M., & Kaldor, A. (1984). Production and characterization of supersonic carbon cluster beams. Journal of Chemical Physics, 81, 3322–3330.

    CAS  Google Scholar 

  • Rojas, A., Martínez, M., Amador, P., & Torres, L. A. (2007). Increasing stability of the fullerenes with the number of carbon atoms: The experimental evidence. The Journal of Physical Chemistry. B, 111, 9031–9035.

    CAS  Google Scholar 

  • Saito, M., & Miyamoto, Y. (2001). Theoretical identification of the smallest fullerene, C20. Physical Review Letters, 87, 035503-1–035503-4.

    Google Scholar 

  • Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters, 60, 2204–2206.

    CAS  Google Scholar 

  • Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1998). Physical properties of carbon nanotubes. London: Imperial College Press.

    Google Scholar 

  • Sakurai, H., Daiko, T., & Hirao, T. (2003). A synthesis of sumanene, a fullerene fragment. Science, 301, 1878.

    CAS  Google Scholar 

  • Sano, M., Kamino, A., Okamura, J., & Shinkai, S. (2001). Ring closure of carbon nanotubes. Science, 293, 1299–1301.

    CAS  Google Scholar 

  • Sastry, G. N., & Priyakumar, U. D. (2001). The role of heteroatom substitution in the rigidity and curvature of buckybowls. A theoretical study. Journal of the Chemical Society, Perkin Transactions 2, 30–40.

    Google Scholar 

  • Sastry, G. N., Jemmis, E. D., Mehta, G., & Shah, S. R. (1993). Synthetic strategies towards C60. Molecular mechanics and MNDO study on sumanene and related structures. Journal of the Chemical Society, Perkin Transactions 2, 1867–1871.

    Google Scholar 

  • Sastry, G. N., Rao, H. S. P., Bednarek, P., & Priyakumar, U. D. (2000). Effect of substitution on the curvature and bowl-to-bowl inversion barrier of bucky-bowls. Study of mono-substituted corannulenes (C19XH10, X = B−, N+, P+ and Si). Chemical Communications, 843–844.

    Google Scholar 

  • Saunders, M., Jiménez-Vázquez, H. A., Cross, R. J., & Poreda, R. J. (1993). Stable compounds of helium and neon: He@C60 and Ne@C60. Science, 259, 1428–1430.

    CAS  Google Scholar 

  • Scheina, S., & Friedrich, T. (2008). A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proceedings of the National Academy of Sciences of the United States of America, 105, 19142–19147.

    Google Scholar 

  • Scott, L. T., Boorum, M. M., McMahon, B. J., Hagen, S., Mack, J., Blank, J., Wegner, H., & de Meijere, A. (2002). A rational chemical synthesis of C60. Science, 295, 1500–1503.

    CAS  Google Scholar 

  • Scuseria, G. E. (1996). Ab initio calculations of fullerenes. Science, 271, 942–945.

    CAS  Google Scholar 

  • Seiders, T. J., Elliot, E. L., Grube, G. H., & Siegel, J. S. (1999). Synthesis of corannulene and alkyl derivatives of corannulene. Journal of the American Chemical Society, 121, 7804–7813.

    CAS  Google Scholar 

  • Seiders, T. J., Baldridge, K. K., Grube, G. H., & Siegel, J. S. (2001). Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: Combined experimental and quantum mechanical analysis. Journal of the American Chemical Society, 123, 517–525.

    CAS  Google Scholar 

  • Serra, S., Cavazzoni, C., Chiarotti, G. L., Scandolo, S., & Tosatti, E. (1999). Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science, 284, 788–790.

    CAS  Google Scholar 

  • Shao, N., Gao, Y., Yoo, S., An, W., & Zeng, X. C. (2006). Search for lowest-energy fullerenes: C98 to C110. The Journal of Physical Chemistry. A, 110, 7672–7676.

    CAS  Google Scholar 

  • Shao, N., Gao, Y., & Zeng, X. C. (2007). Search for lowest-energy fullerenes 2: C38 to C80 and C112 to C120. The Journal of Physical Chemistry C, 111, 17671–17677.

    CAS  Google Scholar 

  • Shukla, M. K., & Leszczynski, J. (2009). Fullerene (C60) forms stable complex with nucleic acid base guanine. Chemical Physics Letters, 469, 207–209.

    CAS  Google Scholar 

  • Shustova, N. B., Kuvychko, I. V., Bolskar, R. D., Seppelt, K., Strauss, S. H., Popov, A. A., & Boltalina, O. V. (2006). Trifluoromethyl derivatives of insoluble small-HOMO-LUMO-Gap hollow higher fullerenes. NMR and DFT structure elucidation of C 2-(C74-D 3h )(CF3)12, C s -(C76-T d (2))(CF3)12, C 2-(C78-D 3h (5))(CF3)12, C s -(C80-C 2v (5))(CF3)12, and C 2-(C82-C 2(5))(CF3)12. Journal of the American Chemical Society, 128, 15793–15798.

    Google Scholar 

  • Shustova, N. B., Newell, B. S., Miller, S. M., Anderson, O. P., Bolskar, R. D., Seppelt, K., Popov, A. A., Boltalina, O. V., & Strauss, S. H. (2007). Discovering and verifying elusive fullerene cage isomers: Structures of C 2-p 11-(C74-D 3h )(CF3)12 and C 2-p 11-(C78-D 3h (5))(CF3)12. Angewandte Chemie, International Edition, 46, 4111–4114.

    CAS  Google Scholar 

  • Simeon, T. M., Yanov, I., & Leszczynski, J. (2005). Ab initio quantum chemical studies of fullerene molecules with substitutes C59X [X = Si, Ge, Sn], C59X− [X = B, Al, Ga, In], and C59X [X = N, P, As, Sb]. International Journal of Quantum Chemistry, 105, 429–436.

    CAS  Google Scholar 

  • Sinha, N., & Yeow, J. T.-W. (2005). Carbon nanotubes for biomedical applications. IEEE Transactions on NanoBioscience, 4, 180–195.

    Google Scholar 

  • Sinnokrot, M. O., & Sherrill, C. D. (2004). Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped, and parallel-displaced configurations. The Journal of Physical Chemistry A, 108, 10200–10207.

    CAS  Google Scholar 

  • Slanina, Z., Zhao, X., Lee, S.-L., & Osawa, E. (1997). C90 temperature effects on relative stabilities of the IPR isomers. Chemical Physics, 219, 193–200.

    CAS  Google Scholar 

  • Slanina, Z., Uhlik, F., Yoshida, M., & Osawa, E. (2000a). A computational treatment of 35 IPR isomers of C88. Fullerene Science and Technology, 8, 417–432.

    CAS  Google Scholar 

  • Slanina, Z., Zhao, X., Deota, P., & Osawa, E. (2000b). Relative stabilities of C92 IPR fullerenes. Journal of Molecular Modeling, 6, 312–317.

    CAS  Google Scholar 

  • Smalley, R. E. (1992). Self-assembly of the fullerenes. Accounts of Chemical Research, 25, 98–105.

    CAS  Google Scholar 

  • Smith, B. W., Monthioux, M., & Luzzi, D. E. (1998). Encapsulated C60 in carbon nanotubes. Nature, 396, 323–324.

    CAS  Google Scholar 

  • Smith, B. W., Monthioux, M., & Luzzi, D. E. (1999). Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials. Chemical Physics Letters, 315, 31–36.

    CAS  Google Scholar 

  • Sofo, J. O., Chaudhari, A. S., & Barber, G. D. (2007). Graphane: A two-dimensional hydrocarbon. Physical Review B, 75, 153401-1–153401-4.

    Google Scholar 

  • Sotiropoulou, S., & Chaniotakis, N. A. (2003). Carbon nanotube array-based biosensor. Analytical and Bioanalytical Chemistry, 375, 103–105.

    CAS  Google Scholar 

  • Stevens, R. M. D., Frederick, N. A., Smith, B. L., Morse, D. E., Stucky, G. D., & Hansma, P. K. (2000). Carbon nanotubes as probes for atomic force microscopy. Nanotechnology, 11, 1–5.

    CAS  Google Scholar 

  • Stevens, R. M. D., Nguyen, C. V., & Meyyappan, M. (2004). Carbon nanotube scanning probe for imaging in aqueous environment. IEEE Transactions on NanoBioscience, 3, 56–60.

    Google Scholar 

  • Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209–220.

    Google Scholar 

  • Stoilova, O., Jérôme, C., Detrembleur, C., Mouithys-Mickalad, A., Manolova, N., Rashkova, I., & Jérôme, R. (2007). C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer, 48, 1835–1843.

    CAS  Google Scholar 

  • Stone, A. J., & Wales, D. J. (1986). Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters, 128, 501–503.

    CAS  Google Scholar 

  • Strano, M. S. (2003). Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. Journal of the American Chemical Society, 125, 16148–16153.

    CAS  Google Scholar 

  • Strano, M. S. (2007). Carbon nanotubes: Sorting out left from right. Nature Nanotechnology, 2, 340–341.

    CAS  Google Scholar 

  • Suchanek, W. L., Libera, J. A., Gogotsi, Y., & Yoshimura, M. (2001). Behavior of C60 under hydrothermal conditions: Transformation to amorphous carbon and formation of carbon nanotubes. Journal of Solid State Chemistry, 160, 184–188.

    CAS  Google Scholar 

  • Suenaga, K., Wakabayashi, H., Koshino, M., Sato, Y., Urita, K., & Iijima, S. (2007). Imaging active topological defects in carbon nanotubes. Nature Nanotechnology, 2, 358–360.

    CAS  Google Scholar 

  • Sulman, E., Yanov, I., & Leszczynski, J. (1999). An active site model and the catalytic activity mechanism of the new fullerene-based catalyst - (η2-C60)Pd(PPh3)2. Fullerenes, Nanotubes and Carbon Nanostructures, 7, 467–484.

    CAS  Google Scholar 

  • Sun, G. (2003). Assigning the major isomers of fullerene C88 by theoretical 13C NMR spectra. Chemical Physics Letters, 367, 26–33.

    CAS  Google Scholar 

  • Sun, G., & Kertesz, M. (2002). 13C NMR spectra for IPR isomers of fullerene C86. Chemical Physics, 276, 107–114.

    CAS  Google Scholar 

  • Suzuki, S., & Kobayashi, Y. (2007). Healing of low-energy irradiation-induced defects in single-walled carbon nanotubes at room temperature. The Journal of Physical Chemistry C, 111, 4524–4528.

    CAS  Google Scholar 

  • Sygula, A., & Rabideau, P. W. (1999). Non-pyrolytic syntheses of buckybowls: Corannulene, cyclopentacorannulene, and a semibuckminsterfullerene. Journal of the American Chemical Society, 121, 7800–7803.

    CAS  Google Scholar 

  • Tagmatarchis, N., Arcon, D., Prato, M., & Shinohara, H. (2002). Production, isolation and structural characterization of [92]fullerene isomers. Chemical Communications, 2992–2993.

    Google Scholar 

  • Tang, A. C., & Huang, F. Q. (1995). Electronic structures of giant fullerenes with Ih symmetry. Physical Review B, 51, 13830–13832.

    Google Scholar 

  • Tang, A. C., Li, Q. S., Liu, C. W., & Li, J. (1993). Symmetrical clusters of carbon and boron. Chemical Physics Letters, 201, 465–469.

    CAS  Google Scholar 

  • Taylor, R. (1992). The third form of carbon: A new era in chemistry. Interdisciplinary Science Reviews, 17, 161–170.

    Google Scholar 

  • Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, separation and characterisation of the fullerenes C60 and C70: The third form of carbon. Journal of the Chemical Society, Chemical Communications, 1423–1425.

    Google Scholar 

  • Taylor, R., Langley, G. J., Dennis, T. J. S., Kroto, H. W., & Walton, D. R. M. (1992). A mass spectrometric NMR study of fullerene-78 isomers. Journal of the Chemical Society, Chemical Communications, 1043–1046.

    Google Scholar 

  • Taylor, R., Langley, G. J., Avent, A. G., Dennis, T. J. S., Kroto, H. W., & Walton, D. R. M. (1993). 13C NMR spectroscopy of C76, C78, C84 and mixtures of C86-C102; anomalous chromatographic behaviour of C82, and evidence for C70H12. Journal of the Chemical Society, Perkin Transactions 2, 1029–1036.

    Google Scholar 

  • Terrones, M., Terrones, G., & Terrones, H. (2002). Structure, chirality, and formation of giant icosahedral fullerenes and spherical graphitic onions. Structural Chemistry, 13, 373–384.

    CAS  Google Scholar 

  • Thilgen, C., & Diederich, F. (2006). Structural aspects of fullerene chemistry - A journey through fullerene chirality. Chemical Reviews, 106, 5049–5135.

    CAS  Google Scholar 

  • Thrash, T. P., Cagle, D. W., Alford, J. M., Wright, K., Ehrhardt, G. J., Mirzadeh, S., & Wilson, L. J. (1999). Toward fullerene-based radiopharmaceuticals: High-yield neutron activation of endohedral 165Ho metallofullerenes. Chemical Physics Letters, 308, 329–336.

    CAS  Google Scholar 

  • Troshin, P. A., Avent, A. G., Darwish, A. D., Martsinovich, N., Abdul-Sada, A. K., Street, J. M., & Taylor, R. (2005). Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18. Science, 309, 278–281.

    CAS  Google Scholar 

  • Troyanov, S. I., & Tamm, N. B. (2009). Cage connectivities of C88 (33) and C92 (82) fullerenes captured as trifluoromethyl derivatives, C88(CF3)18 and C92(CF3)16. Chemical Communications, 6035–6037.

    Google Scholar 

  • Valsakumar, M. C., Subramanian, N., Yousuf, M., Sahu, P. Ch., Hariharan, Y., Bharathi, A., Sastry, V. S., Janaki, J., Rao, G. V. N., Radhakrishnan, T. S., & Sundar, C. S. (1993). Crystal structure and disorder in solid C70. Physical Review B, 48, 9080–9085.

    CAS  Google Scholar 

  • Velasco-Santos, C., Martínez-Hernández, A. L., Consultchi, A., Rodríguez, R., & Castaño, V. M. (2003). Naturally produced carbon nanotubes. Chemical Physics Letters, 373, 272–276.

    CAS  Google Scholar 

  • Vostrowsky, O., & Hirsch, A. (2004). Molecular peapods as supramolecular carbon allotropes. Angewandte Chemie, International Edition, 43, 2326–2329.

    CAS  Google Scholar 

  • Wahl, F., Worth, J., & Prinzbach, H. (1993). The pagodane route to dodecahedranes: An improved approach to the C20H20 parent framework; partial and total functionalizations - Does C20-fullerene exist? Angewandte Chemie (International Edition in English), 32, 1722–1726.

    Google Scholar 

  • Wanbayor, R., & Ruangpornvisuti, V. (2008). Theoretical study of adsorption of C1-C3 alkoxides on various cap-ended and open-ended armchair (5,5) single-walled carbon nanotubes. Carbon, 46, 12–18.

    CAS  Google Scholar 

  • Wang, G.-W., Zhang, X.-H., Zhan, H., Guo, Q.-X., & Wu, Y.-D. (2003). Accurate calculation, prediction, and assignment of 3He NMR chemical shifts of Helium-3-encapsulated fullerenes and fullerene derivatives. Journal of Organic Chemistry, 68, 6732–6738.

    CAS  Google Scholar 

  • Wang, C., Zhou, G., Liu, H., Wu, J., Qiu, Y., Gu, B.-L., & Duan, W. (2006). Chemical functionalization of carbon nanotubes by carboxyl groups on Stone-Wales defects: A density functional theory study. The Journal of Physical Chemistry. B, 110, 10266–10271.

    CAS  Google Scholar 

  • Wang, X., Tabakman, S. M., & Dai, H. (2008). Atomic layer deposition of metal oxides on pristine and functionalized graphene. Journal of the American Chemical Society, 130, 8152–8153.

    CAS  Google Scholar 

  • WenXing, B., ChangChun, Z., & WanZhao, C. (2004). Simulation of Youngs modulus of single-walled carbon nanotubes by molecular dynamics. Physica B, 352, 156–163.

    Google Scholar 

  • Wikipedia - http://en.wikipedia.org/wiki/Carbon.

  • Woodward, R. B., & Hoffmann, R. (1969). The conservation of orbital symmetry. Angewandte Chemie (International Edition in English), 8, 781–853.

    CAS  Google Scholar 

  • Wu, J., & Hagelberg, F. (2008). Computational study on C80 enclosing mixed trimetallic nitride clusters of the form Gd x M3 − x N (M = Sc, Sm, Lu). The Journal of Physical Chemistry C, 112, 5770–5777.

    CAS  Google Scholar 

  • Wu, Y.-T., & Siegel, J. S. (2006). Aromatic molecular-bowl hydrocarbons: Synthetic derivatives, their structures, and physical properties. Chemical Reviews, 106, 4843–4867. and references therein.

    Google Scholar 

  • Wu, X., & Zeng, X. C. (2009). Periodic graphene nanobuds. Nano Letters, 9, 250–256.

    CAS  Google Scholar 

  • Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4, 505–509.

    CAS  Google Scholar 

  • Xie, S.-Y., Gao, F., Lu, X., Huang, R.-B., Wang, C.-R., Zhang, X., Liu, M.-L., Deng, S.-L., & Zheng, L.-S. (2004). Capturing the labile fullerene[50] as C50Cl10. Science, 304, 699.

    CAS  Google Scholar 

  • Yakobson, B. I., Brabec, C. J., & Bernholc, J. (1996). Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 76, 2511–2514.

    CAS  Google Scholar 

  • Yamada, M., Nakahodo, T., Wakahara, T., Tsuchiya, T., Maeda, Y., Akasaka, T., Kako, M., Yoza, K., Horn, E., Mizorogi, N., Kobayashi, K., & Nagase, S. (2005). Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. Journal of the American Chemical Society, 127, 14570–14571.

    CAS  Google Scholar 

  • Yamada, M., Akasaka, T., & Nagase, S. (2010). Endohedral metal atoms in pristine and functionalized fullerene cages. Accounts of Chemical Research, 43, 92–102.

    CAS  Google Scholar 

  • Yang, S. H., Shin, W. H., Lee, J. W., Kim, S. Y., Woo, S. I., & Kang, J. K. (2006a). Interaction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes. The Journal of Physical Chemistry B, 110, 13941–13946.

    CAS  Google Scholar 

  • Yang, S. H., Shin, W. H., & Kang, J. K. (2006b). Ni adsorption on Stone-Wales defect sites in single-wall carbon nanotubes. Journal of Chemical Physics, 125, 084705-1–084705-5.

    Google Scholar 

  • Yang, F. H., Lachawiec, A. J., Jr., & Yang, R. T. (2006c). Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. The Journal of Physical Chemistry. B, 110, 6236–6244.

    CAS  Google Scholar 

  • Yanov, I., Leszczynski, J., Sulman, E., Matveeva, V., & Semagina, N. (2004). Modeling of the molecular structure and catalytic activity of the new fullerene-based catalyst (η2-C60)Pd(PPh3)2: An application in the reaction of selective hydrogenation of acetylenic alcohols. International Journal of Quantum Chemistry, 100, 810–817.

    CAS  Google Scholar 

  • Yumura, T., Nozaki, D., Bandow, S., Yoshizawa, K., & Iijima, S. (2005a). End-cap effects on vibrational structures of finite-length carbon nanotubes. Journal of the American Chemical Society, 127, 11769–11776.

    CAS  Google Scholar 

  • Yumura, T., Sato, Y., Suenaga, K., & Iijima, S. (2005b). Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? A theoretical study. The Journal of Physical Chemistry. B, 109, 20251–20255.

    CAS  Google Scholar 

  • Yumura, T., Kertesz, M., & Iijima, S. (2007). Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes. The Journal of Physical Chemistry. B, 111, 1099–1109.

    CAS  Google Scholar 

  • Zhang, J., & Zuo, J. M. (2009). Structure and diameter-dependent bond lengths of a multi-walled carbon nanotube revealed by electron diffraction. Carbon, 47, 3515–3528.

    CAS  Google Scholar 

  • Zhang, B. L., Wang, C. Z., Ho, K. M., Xu, C. H., & Chan, C. T. (1993). The geometry of large fullerene cages: C72 to C102. Journal of Chemical Physics, 98, 3095–3102.

    CAS  Google Scholar 

  • Zhang, G., Qi, P., Wang, X., Lu, Y., Mann, D., Li, X., & Dai, H. (2006). Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 6026–6027.

    CAS  Google Scholar 

  • Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., & Gu, Z. (2008). Influence of ethylene and hydrogen flow rates on the wall number, Crystallinity, and length of millimeter-long carbon nanotube array. The Journal of Physical Chemistry C, 112, 12706–12709 and references therein.

    Google Scholar 

  • Zhao, K., & Pitzer, R. M. (1996). Electronic structure of C28, Pa@C28, and U@C28. Journal of Physical Chemistry, 100, 4798–4802.

    CAS  Google Scholar 

  • Zhao, Y., & Truhlar, D. G. (2007). Size-selective supramolecular chemistry in a hydrocarbon nanoring. Journal of the American Chemical Society, 129, 8440–8442.

    CAS  Google Scholar 

  • Zhao, Y., & Truhlar, D. G. (2008). Computational characterization and modeling of buckyball tweezers: Density functional study of concave convex interactions. Physical Chemistry Chemical Physics, 10, 2813–2818.

    CAS  Google Scholar 

  • Zhao, X., Slanina, Z., & Goto, H. (2004a). Theoretical studies on the relative stabilities of C96 IPR fullerenes. The Journal of Physical Chemistry A, 108, 4479–4484.

    CAS  Google Scholar 

  • Zhao, X., Goto, H., & Slanina, Z. (2004b). C100 IPR fullerenes: Temperature-dependent relative stabilities based on the Gibbs function. Chemical Physics, 306, 93–104.

    CAS  Google Scholar 

  • Zhou, Z., Steigerwald, M., Hybertsen, M., Brus, L., & Friesner, R. A. (2004). Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube. Journal of the American Chemical Society, 126, 3597–3607.

    CAS  Google Scholar 

  • Zhou, L., Gao, C., Zhu, D. D., Xu, W., Chen, F. F., Palkar, A., Echegoyen, L., & Kong, E. S.-W. (2009). Facile functionalization of multilayer fullerenes (carbon nanoonions) by nitrene chemistry and grafting from strategy. Chemistry - A European Journal, 15, 1389–1396.

    CAS  Google Scholar 

  • Zhu, Z. H., Hatori, H., Wang, S. B., & Lu, G. Q. (2005). Insights into hydrogen atom adsorption on and the electrochemical properties of nitrogen-substituted carbon materials. The Journal of Physical Chemistry. B, 109, 16744–16749.

    CAS  Google Scholar 

  • Zope, R. R., Baruah, T., Pederson, M. R., & Dunlap, B. I. (2008). Static dielectric response of icosahedral fullerenes from C60 to C2160 characterized by an all-electron density functional theory. Physical Review B, 77, 115452-1–115452-5.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the High Performance Computational Design of Novel Materials (HPCDNM) Project funded by the Department of Defense (DoD) through the U.S. Army/Engineer Research and Development Center (Vicksburg, MS); Contract # W912HZ-06-C-0057 and by the Office of Naval Research (ONR) grant 08PRO2615-00/N00014-08-1-0324. We also acknowledge the support from National Science Foundation (NSF) for Interdisciplinary Center for Nanotoxicity (ICN) through CREST grant HRD-0833178.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Dinadayalane, T.C., Leszczynski, J. (2012). Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures: Graphene, Fullerenes, Carbon Nanotubes, and Their Derivatives. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_22

Download citation

Publish with us

Policies and ethics