Skip to main content

Structures, Energetics, and Spectroscopic Fingerprints of Water Clusters n = 2–24

  • Reference work entry
  • First Online:

Abstract

This chapter discusses the structures, energetics, and vibrational spectra of the first few (n ≤ 24) water clusters obtained from high-level electronic structure calculations. The results are discussed in the perspective of being used to parameterize/assess the accuracy of classical and quantum force fields for water. To this end, a general introduction with the classification of those force fields is presented. Several low-lying families of minima for the medium cluster sizes are considered. The transition from the “all surface” to the “fully coordinated” cluster structures occurring at n = 17 and its spectroscopic signature is presented. The various families of minima for n = 20 are discussed together with the low-energy networks of the pentagonal dodecahedron (H2O)20 water cage. Finally, the low-energy networks of the tetrakaidecahedron (T-cage) (H2O)24 cluster are shown and their significance in the construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamovic, I., Freitag, M. A., & Gordon, M. S. (2003). Density functional theory based effective fragment potential method. Journal of Chemical Physics, 118, 6725–6732.

    CAS  Google Scholar 

  • Apra, E., Rendell, A. P., Harrison, R. J., Tippraju, V., deJong, W. A., & Xantheas, S. S. (2009). Liquid water: Obtaining the right answer for the right reasons. In Proceedings of the conference on high performance computing networking, storage and analysis. Portland: ACM.

    Google Scholar 

  • Ball, P. (2008). Water: Water-an enduring mystery, Nature, 452, 291–292.

    CAS  Google Scholar 

  • Bartlett, R. J., & Purvis, G. D. (1978). Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitation for the correlation problem. International Journal of Quantum Chemistry, 14, 561–581.

    CAS  Google Scholar 

  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100.

    CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648.

    CAS  Google Scholar 

  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269–6271.

    CAS  Google Scholar 

  • Beuhler, R. J., & Friedman, L. (1982). A study of the formation of high molecular-weight water cluster ions (m/e < 59000) in expansion of ionized gas mixtures. Journal of Chemical Physics, 77, 2549–2557.

    CAS  Google Scholar 

  • Boys, S. F., & Bernardi, F. (1970). Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Molecular Physics, 19, 553.

    CAS  Google Scholar 

  • Bukowski, R., Szalewicz, K., Groenenboom, G. C., & van der Avoird, A. (2007). Predictions of the properties of water from first principles. Science, 315, 1249–1252.

    CAS  Google Scholar 

  • Bulusu, S., Yoo, S., Aprà, E., Xantheas, S., & Zeng, X. C. (2006). Lowest-energy structures of water clusters (H2O)11 and (H2O)13. Journal of Physical Chemistry A, 110, 11781–11784.

    CAS  Google Scholar 

  • Bunge, C. F. (1970). Electronic wave functions for atom. II. Some aspects of convergence of configuration interaction expansion for ground states of He isoelectronic series. Theoretica Chimica Acta, 16, 126.

    CAS  Google Scholar 

  • Burnham, C. J., & Xantheas, S. S. (2002a). Development of transferable interaction models for water. I. Prominent features of the water dimer potential energy surface. Journal of Chemical Physics, 116, 1479–1492.

    CAS  Google Scholar 

  • Burnham, C. J., & Xantheas, S. S. (2002b). Development of transferable interaction models for water. IV. A flexible, all-atom polarizable potential (TTM2–F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface. Journal of Chemical Physics, 116, 1479–1492.

    CAS  Google Scholar 

  • Burnham, C. J., & Xantheas, S. S. (2002c). Development of transferable interaction models for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles. Journal of Chemical Physics, 116, 1500–1510.

    CAS  Google Scholar 

  • Burnham, C. J., Li, J., Xantheas, S. S., & Leslie, M. (1999). The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n = 2–21) and the phonon spectrum of ice Ih. Journal of Chemical Physics, 110, 4566–4581.

    CAS  Google Scholar 

  • Burnham, C. J., Anick, D. J., Mankoo, P. K., & Reiter, G. F. (2008). The vibrational proton potential in bulk liquid water and ice. Journal of Chemical Physics, 128, 154519.

    CAS  Google Scholar 

  • Chalasinski, G., & Szczesniak, M. M. (1994). Origins of structure and energetics of van-der-waals clusters from ab-initio calculations. Chemical Reviews, 94, 1723–1765.

    CAS  Google Scholar 

  • Cizek, J. (1966). On correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. Journal of Chemical Physics, 45, 4256.

    CAS  Google Scholar 

  • Cizek, J. (1969). Advances in Chemical Physics, 14, 35.

    CAS  Google Scholar 

  • Clementi, E. (1967). Study of electronic structure of molecules. II. Wavefunctions for NH3+HCl → NH4Cl reaction. Journal of Chemical Physics, 46, 3851–3880.

    CAS  Google Scholar 

  • Coester, F. (1958). Bound states of a many-particle system. Nuclear Physics, 7, 421–424.

    Google Scholar 

  • Coester, F., & Kümmel, K. (1960). Short-range correlations in nuclear wave functions. Nuclear Physics, 17, 477–485.

    CAS  Google Scholar 

  • Cruzan, J. D., Braly, L. B., Brown, M. G., Loeser, J. G., & Saykally, R. J. (1996a). Quantifying hydrogen bond cooperativity in water: VRT spectroscopy of the water tetramer. Science, 271, 59–62.

    CAS  Google Scholar 

  • Cruzan, J. D., Brown, M. G., Liu, K., Braly, L. B., & Saykally, R. J. (1996b). The far-infrared vibration-rotation-tunneling spectrum of the water tetramer-d8. Journal of Chemical Physics, 105, 6634–6644.

    CAS  Google Scholar 

  • Cruzan, J. D., Viant, M. R., Blake, G. A., & Saykally, R. J. (1997). Terahertz laser vibration-rotation tunneling spectroscopy of the water tetramer. Journal of Physical Chemistry A, 101, 9022–9031.

    CAS  Google Scholar 

  • Dang, L. X., & Chang, T. M. (1997). Molecular dynamics study of water clusters, liquid, and liquid-vapor interface of water with many-body potentials. Journal of Chemical Physics, 106, 8149–8159.

    CAS  Google Scholar 

  • Day, P. N., Jensen, J. H., Gordon, M. S., Webb, S. P., Stevens, W. J., Krauss, M., Garmer, D., Basch, H., & Cohen, D. (1996). An effective fragment method for modeling solvent effects in quantum mechanical calculations. Journal of Chemical Physics, 105, 1968–1986.

    CAS  Google Scholar 

  • Day, P. N., Pachter, R., Gordon, M. S., & Merrill, G. N. (2000). A study of water clusters using the effective fragment potential and Monte Carlo simulated annealing. Journal of Chemical Physics, 112, 2063–2073.

    CAS  Google Scholar 

  • Dunning, T. H., Jr. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics, 90, 1007–1023.

    CAS  Google Scholar 

  • Dunning, T. H., Jr. (2000). A road map for the calculation of molecular binding energies. Journal of Physical Chemistry A, 104, 9062–9080.

    CAS  Google Scholar 

  • Dunning, T. H., Jr., Peterson, K. A., & Woon, D. E. (1998). Encyclopedia of computational chemistry. New York: Wiley.

    Google Scholar 

  • Eggenberger, R., Gerber, S., Huber, H., & Searles, D. (1991). Basis set superposition errors in intermolecular structures and force-constants. Chemical Physics Letters, 183, 223–226.

    CAS  Google Scholar 

  • Emsley, J., Hoyte, O. P. A., & Overill, R. E. (1978). Ab initio calculations on very strong hydrogen-bond of biformate anion and comparative esterification studies. Journal of the American Chemical Society, 100, 3303–3306.

    CAS  Google Scholar 

  • Fanourgakis, G. S., & Xantheas, S. S. (2006). The flexible, polarizable, thole-type interaction potential for water (TTM2-F) revisited. Journal of Physical Chemistry A, 110, 4100–4106.

    CAS  Google Scholar 

  • Fanourgakis, G. S., & Xantheas, S. S. (2008). Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. Journal of Chemical Physics, 128, 074506.

    Google Scholar 

  • Fanourgakis, G. S., Aprà, E., & Xantheas, S. S. (2004). High-level ab initio calculations for the four low-lying families of minima of (H2O)20. I. Estimates of MP2/CBS binding energies and comparison with empirical potentials. Journal of Chemical Physics, 121, 2655–2663.

    CAS  Google Scholar 

  • Fanourgakis, G. S., Aprà, E., de Jong, W. A., & Xantheas, S. S. (2005). High-level ab initio calculations for the four low-lying families of minima of (H2O)20. II. Spectroscopic signatures of the dodecahedron, fused cubes, face-sharing pentagonal prisms, and edge-sharing pentagonal prisms hydrogen bonding networks. Journal of Chemical Physics, 122, 134304.

    Google Scholar 

  • Fast, P. L., Sanchez, M.L., & Truhlar, D. G. (1999). Infinite basis limits in electronic structure theory. Journal of Chemical Physics, 111, 2921–2926.

    CAS  Google Scholar 

  • Feller, D. (1992). Application of systematic sequences of wave-functions to the water dimer. Journal of Chemical Physics, 96, 6104–6114.

    CAS  Google Scholar 

  • Gordon, M. S., Freitag, M. A., Bandyopadhyay, P., Jensen, J. H., Kairys, V., & Stevens, W. J. (2001). The effective fragment potential method: A QM-based MM aproach to modeling environmental effects in chemistry. Journal of Physical Chemistry A, 105, 293–307.

    CAS  Google Scholar 

  • Haberland, H. (1984). Electronic and atomic collisions. New York: Elsevier.

    Google Scholar 

  • Halkier, A., Klopper, W., Helgaker, T., Jorgensen, P., & Taylor, P. R. (1999). Basis set convergence of the interaction energy of hydrogen-bonded complexes. Journal of Chemical Physics, 111, 9157–9167.

    CAS  Google Scholar 

  • Hartke, B. (2003). Size-dependent transition from all-surface to interior-molecule structures in pure neutral water clusters. Physical Chemistry Chemical Physics, 5, 275–284.

    CAS  Google Scholar 

  • Hermann, V., Kay, B. D., & Castleman, A. W., Jr. (1982). Evidence for the existence of structures in gas-phase homomolecular clusters of water. Chemical Physics, 72, 185–200.

    CAS  Google Scholar 

  • Hobbs, P. V. (1974). Ice physics. Oxford: Clarendon.

    Google Scholar 

  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B864.

    Google Scholar 

  • Hura, G., Sorenson, J. M., Glaeser, R. M., & Head-Gordon, T. (2000). A high-quality x-ray scattering experiment on liquid water at ambient conditions. Journal of Chemical Physics, 113, 9140–1948.

    CAS  Google Scholar 

  • Jeffrey, G. A., Jordan, T. H., & McMullan, R. K. (1967). Clathrate hydrates of some amines. Science, 155, 689.

    CAS  Google Scholar 

  • Jensen, J. H., & Gordon, M. S. (1998). An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. II. Application to the effective fragment potential method. Journal of Chemical Physics, 108, 4772–4782.

    CAS  Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926–935.

    CAS  Google Scholar 

  • Kazimirski, J. K., & Buch, V. (2003). Search for low energy structures of water clusters (H2O) n , n = 20–22, 48, 123, and 293. Journal of Physical Chemistry, 107, 9762–9775.

    CAS  Google Scholar 

  • Kendall, R. A., Dunning, T. H., Jr., & Harrison, R. J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 96, 6796–6806.

    CAS  Google Scholar 

  • Kendall, R. A., Simons, J., Gutowski, M., & Chalasinski, G. (1989). Ab initio energy and structure of H(H2)2. Journal of Physical Chemistry, 93, 621–625.

    CAS  Google Scholar 

  • Kirov, M. V. (1996). Conformational combinatorial analysis of polyhedral water clusters. Journal of Structural Chemistry, 37, 84–91.

    Google Scholar 

  • Kirov, M. V., Fanourgakis, G. S., & Xantheas, S. S. (2008). Identifying the most stable networks in polyhedral water clusters. Chemical Physics Letters, 461, 108–188.

    Google Scholar 

  • Klopper, W. (1995). Limiting values for Møller-Plesset second-order correlation energies of polyatomic systems: A benchmark study on Ne, HF, H2O, N2, and He…He. Journal of Chemical Physics, 102, 6168–6179.

    CAS  Google Scholar 

  • Koga, K., Parra, R. D., Tanaka, H., & Zeng, X. C. (2000). Ice nanotube: What does the unit cell look like? Journal of Chemical Physics, 113, 5037–5040.

    CAS  Google Scholar 

  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133.

    Google Scholar 

  • Kucharski, S. A., & Bartlett, R. J. (1992). The coupled-cluster single, double, triple, and quadruple excitation method. Journal of Chemical Physics, 97, 4282–4288.

    CAS  Google Scholar 

  • Kuo, J.-L., Coe, J. V., & Singer, S. J. (2001). On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. Journal of Chemical Physics, 114, 2527–2540.

    CAS  Google Scholar 

  • Lagutchenkov, A., Fanourgakis, G. S., Niedner-Schatteburg, G., & Xantheas, S. S. (2005). The spectroscopic signature of the “all-surface” to “internally solvated” structural transition in water clusters in the n = 17 ∼ 21 size regime. Journal of Chemical Physics, 122, 194310.

    Google Scholar 

  • Leclercq, J. M., Allavena, M., & Bouteiller, Y. (1983). On the basis set superposition error in potential surface investigations. I. Hydrogen-bonded complexes with standard basis set-functions. Journal of Chemical Physics, 78, 4606–4611.

    CAS  Google Scholar 

  • Lee, C., Chen, H., & Fitzgerald, G. (1995). Chemical bonding in water clusters. Journal of Chemical Physics, 122, 1266–1269.

    Google Scholar 

  • Lee, H. M., Suh, S. B., & Kim, K. S. (2001). Structures, energies, and vibrational spectra of water undecamer and dodecamer: An ab initio study. Journal of Chemical Physics, 114, 10749–10756.

    CAS  Google Scholar 

  • Li, Z., & Scheraga, H. A. (1987). Monte-Carlo-minimization approach to the multiple-minima problem in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 84, 6611–6615.

    CAS  Google Scholar 

  • Lin, S. S. (1973). Detection of large water clusters by a low re-quadrupole mass filter. Review of Scientific Instruments, 44, 516.

    CAS  Google Scholar 

  • Liu, B., & McLean, A. D. (1973). Accurate calculation of attractive interaction of two ground-state helium-atoms. Journal of Chemical Physics, 59, 4557–4558.

    CAS  Google Scholar 

  • Liu, K., Loeser, J. G., Elrod, M. J., Host, B. C., Rzepiela, J. A., Pugliano, N., & Saykally, R. J. (1994). Dynamics of structural rearrangements in the water trimer. Journal of the American Chemical Society, 116, 3507–3512.

    CAS  Google Scholar 

  • Liu, K., Brown, M. G., Cruzan, J. D., & Saykally, R. J. (1996a). Vibration-rotation tunneling spectra of the water pentamer: Structure and dynamics. Science, 271, 62–64.

    CAS  Google Scholar 

  • Liu, K., Brown, M. G., Carter, C., Saykally, R. J., Gregory, J. K., & Clary, D. C. (1996b). Characterization of a cage form of the water hexamer. Nature, 381, 501–503.

    CAS  Google Scholar 

  • Liu, K., Brown, M. G., & Saykally, R. J. (1997a). Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer. Journal of Physical Chemistry A, 101, 8995–9010.

    CAS  Google Scholar 

  • Liu, K., Brown, M. G., Cruzan, J. D., & Saykally, R. J. (1997b). Terahertz laser spectroscopy of the water pentamer: Structure and hydrogen bond rearrangement dynamics. Journal of Physical Chemistry A, 101, 9011–9021.

    CAS  Google Scholar 

  • Mao, W. L., Mao, H.-K., Meng, Y., Eng, P. J., Hu, M. Y., Chow, P., Cai, Y. Q., Shu, J., & Hemley, R. J. (2006). X-ray-induced dissociation of H2O and formation of an O2-H2 alloy at high pressure. Science, 314, 636–638.

    CAS  Google Scholar 

  • Mao, W. L., Koh, C. A., & Sloan, E. D. (2007). Clathrate hydrates under pressure. Physics Today, 60(10), 42.

    CAS  Google Scholar 

  • Martin, J. M. L. (1996). Ab initio total atomization energies of small molecules - Towards the basis set limit. Chemical Physics Letters, 259, 669–678.

    CAS  Google Scholar 

  • Mayer, I., & Surjan, P. R. (1992). Monomer geometry relaxation and the basis set superposition error. Chemical Physics Letters, 191, 497–499.

    CAS  Google Scholar 

  • McDonald, S., Ojamaee, L., & Singer, S. J. (1998). Graph theoretical generation and analysis of hydrogen-bonded structures with applications to the neutral and protonated water cube and dodecahedral clusters. Journal of Physical Chemistry A, 102, 2824–2832.

    CAS  Google Scholar 

  • Møller, C., & Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Physical Review, 46, 618–622.

    Google Scholar 

  • Nagashima, U., Shinohara, H., & Tanaka, H. (1986). Enhanced stability of ion clathrate structures for magic number water clusters. Journal of Chemical Physics, 84, 209–214.

    CAS  Google Scholar 

  • Netzloff, H. M., & Gordon, M. S. (2004).The effective fragment potential: Small clusters and radial distribution functions. Journal of Chemical Physics, 121, 2711–2714.

    CAS  Google Scholar 

  • Niedner-Schatteburg, G., & Bondybey, V. E. (2000). FT-ICR studies of solvation effects in ionic water cluster reactions. Chemical Reviews, 100, 4059–4086.

    CAS  Google Scholar 

  • Nigra, P., & Kais, S. (1999). Pivot method for global optimization: A study of water clusters (H2O) N with 2 ≤ N ≤ 33. Chemical Physics Letters, 305, 433–438.

    CAS  Google Scholar 

  • Peterson, K. A., Dunning, T. H., Jr. (1995). Benchmark calculations with correlated molecular wate-functions. 7. Binding-energy and structure of the HF dimer. Journal of Chemical Physics, 102, 2032–2041.

    CAS  Google Scholar 

  • Petrenko, V. F., & Whitworth, R. W. (1999). Physics of ice. New York: Oxford University Press.

    Google Scholar 

  • Pugliano, N., & Saykally, R. J. (1992). Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. Science, 257, 1937–1940.

    CAS  Google Scholar 

  • Purvis, G. D., & Bartlett, R. J. (1982). A full coupled-cluster singles and doubles model – The inclusion of disconnected triples. Journal of Chemical Physics, 76, 1910–1917.

    CAS  Google Scholar 

  • Raghavachari, K., Trucks, G. W., Pople, J. A., & Head-Gordon, M. (1989). A 5th-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157, 479–483.

    CAS  Google Scholar 

  • Raghavachari, K., Pople, J. A., Replogle, E. S., & Head-Gordon, M. (1990). 5th-order Moller-plesset perturbation-theory - comparison of existing correlation methods and implementation of new methods correct to 5th-order. Journal of Physical Chemistry, 94, 5579.

    CAS  Google Scholar 

  • Ripmeester, J. A., Tse, J. S., Ratcliffe, C. I., & Powell, B. M. (1987). A new clathrate hydrate structure. Nature, 325, 135–136.

    CAS  Google Scholar 

  • Robinson, G. W., Zhu, S.-B., Singh, S., & Evans, M. W. (1996). Water in biology, chemistry and physics. Experimental overviews and computational methodologies. Singapore: World Scientific.

    Google Scholar 

  • Sadlej, J. (2001). Theoretical study of structure and spectra of cage clusters (H2O) n , n = 11, 12. Chemical Physics Letters, 333, 485–492.

    CAS  Google Scholar 

  • Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. Journal of Chemical Physics, 100, 5829.

    Google Scholar 

  • Schindler, T., Berg, C., Niedner-Schatteburg, G., & Bondybey, V. E. (1996). Protonated water clusters and their black body radiation induced fragmentation. Chemical Physics Letters, 250, 301–308.

    CAS  Google Scholar 

  • Schlegel, V. (1883). Verh. Kais. Leopold.-Carolin. Dtsch. Akad. Naturforsch, 44, 343.

    Google Scholar 

  • Schüth, F. (2005). Technology: Hydrogen and hydrates. Nature, 434, 712–713.

    Google Scholar 

  • Searcy, J. Q., & Fenn, J. B. (1974). Clustering of water on hydrated protons in supersonic free jet expansion. Journal of Chemical Physics, 61, 5282–5288.

    CAS  Google Scholar 

  • Sloan, E. D., Jr. (1998). Clathrate hydrates of natural gases(2nd ed.). New York: Marcel Dekker.

    Google Scholar 

  • Smit, P. H., Derissen, J. L., & van Duijneveldt, F. B. (1978). Role of distortion energy in ab initio calculated dimerization energy of formic acid. Journal of Chemical Physics, 69, 4241–4244.

    CAS  Google Scholar 

  • Soper, A. K. (2000). The radial distributions of water and ice from 220 to 673 K and at pressure up to 400 Mpa. Chemical Physics, 258, 121–137.

    CAS  Google Scholar 

  • Sorenson, J. M., Hura, G., Glaeser, R. M., & Head-Gordon, T. (2000). What can x-ray scattering tell us about the radial distribution functions of water? Journal of Chemical Physics, 113, 9149–1961.

    CAS  Google Scholar 

  • Stace, A. J., & Moore, C.(1983). A correlation between structure and reactivity in ion clusters. Chemical Physics Letters, 96, 80–84.

    CAS  Google Scholar 

  • Stillinger, F. H., & Rahman, A. (1974). Molecular-dynamics study of liquid water under high pression. Journal of Chemical Physics, 60, 1545.

    CAS  Google Scholar 

  • Suzuki, S., & Blake, G. A. (1994). Pseudorotation in the D20 trimer. Chemical Physics Letters, 229, 499.

    CAS  Google Scholar 

  • Szalewicz, K., Leforestier, C., & van der Avoird, A. (2009). Towards the complete understanding of water by a first-principles computational approach. Chemical Physics Letters, 482, 1–14.

    CAS  Google Scholar 

  • Termath, V., Klopper, W., & Kutzelnigg, W. (1991). Wave-functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. II. second-order Møller-Plesset (MP2–R12) calculations on closed-shell atoms. Journal of Chemical Physics, 94, 2002–2019.

    CAS  Google Scholar 

  • Tsai, C. J., & Jordan, K. D. (1993). Theoretical study of small water clusters: Low-energy fused cubic structures for (H2O) n , n = 8, 12, 16, and 20. Journal of Physical Chemistry, 97, 5208–5210.

    CAS  Google Scholar 

  • van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G. C. M., & van Lenthe, J. H. (1994). State of the art in counterpoise theory. Chemical Reviews, 94, 1873.

    Google Scholar 

  • van Duijneveldt-van de Rijdt, J. G. C. M., & van Duijneveldt, F. B. (1992). Convergence to the basis-set limit in abinitio calculations at the correlated level on the water dimer. Journal of Chemical Physics, 97, 5019.

    CAS  Google Scholar 

  • van Lenthe, J. H., van Duijneveldt-van de Rijdt, J. G. C. M., & van Duijneveldt, F. B. (1987). Advances in Chemical Physics, 69, 521.

    Google Scholar 

  • Viant, M. R., Cruzan, J. D., Lucas, D. D., Brown, M. G., Liu, K., & Saykally, R. J.(1997). Pseudorotation in water trimer isotopomers using terahertz laser spectroscopy. Journal of Physical Chemistry A, 101, 9032–9041.

    CAS  Google Scholar 

  • Wales, D. J., & Hodges, M. P. (1998). Global minima of water clusters (H2O) n , n ≤ 21, described by an empirical potential. Chemical Physics Letters, 286, 65–72.

    CAS  Google Scholar 

  • Wales, D. J., & Scheraga, H. A. (1999). Global optimization of clusters, crystals, and biomolecules. Science, 285, 1368–1372.

    CAS  Google Scholar 

  • Wilson, A. K., & Dunning, T. H., Jr. (1997). Benchmark calculations with correlated molecular wave functions. X. Comparison with “exact” MP2 calculations on Ne, HF, H2O, and N2. Journal of Chemical Physics, 106, 8718–8726.

    CAS  Google Scholar 

  • Xantheas, S. S. (1994). Ab initio studies of cyclic water clusters (H2O) n , n = 1–6. II. Analysis of many-body interactions. Journal of Chemical Physics, 100, 7523–7534.

    CAS  Google Scholar 

  • Xantheas, S. S. (1996a). Singificance of higher-order many-body interaction energy terms in water clusters and bulk water. Philosophical Magazine Part B, 73, 107–115.

    CAS  Google Scholar 

  • Xantheas, S. S. (1996b). On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. Journal of Chemical Physics, 104, 8821–8824.

    CAS  Google Scholar 

  • Xantheas, S. S. (2000). Cooperativity and hydrogen bonding network in water clusters. Chemical Physics, 258, 225–231.

    CAS  Google Scholar 

  • Xantheas, S. S., & Aprà, E. (2004). The binding energies of the D2d and S4 water octamer isomers: High-level electronic structure and empirical potential results. Journal of Chemical Physics, 120, 823–828.

    CAS  Google Scholar 

  • Xantheas, S. S., & Dunning, T. H., Jr. (1993a). The structure of the water trimer from ab initio calculations. Journal of Chemical Physics, 98, 8037–8040.

    CAS  Google Scholar 

  • Xantheas, S. S., & Dunning, T. H., Jr. (1993b). Ab initio studies of cyclic water clusters (H2O) n , n = 1–6. I. Optimal structures and vibrational spectra. Journal of Chemical Physics, 99, 8774–8792.

    CAS  Google Scholar 

  • Xantheas, S. S., & Dunning, T. H., Jr. (1993c). Theoretical estimate of the enthalphy of formation of sulfhydryl radical (HSO) and HSO-SOH isomerization energy. Journal of Physical Chemistry, 97, 18–19.

    CAS  Google Scholar 

  • Xantheas, S. S., Burnham, C. J., & Harrison, R. J. (2002). Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. Journal of Chemical Physics, 116, 1493–1499.

    CAS  Google Scholar 

  • Yang, X., & Castleman, A. W.(1989). Large protonated water clusters H+(H2O) n (1 ≤ n > 60): The production and reactivity of clathrate-like structures under thermal conditions. Journal of the American Chemical Society, 111, 6845–6846.

    CAS  Google Scholar 

  • Yoo, S., Kirov, M. V., & Xantheas, S. S. (2009). Low-energy networks of the T-cage (H2O)24 cluster and their use in constructing periodic unit cells of the structure I (sI) hydrate lattice. Journal of the American Chemical Society, 131, 7564–7566.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Sciences, U.S. Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research. Additional computer resources were provided by the Office of Basic Energy Sciences, US Department of Energy at the National Energy Research Scientific Computing Center, a U.S. Department of Energy’s Office of Science user facility at Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Yoo, S., Xantheas, S.S. (2012). Structures, Energetics, and Spectroscopic Fingerprints of Water Clusters n = 2–24. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_21

Download citation

Publish with us

Policies and ethics