Skip to main content

Solvent Effects in Quantum Chemistry

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

The properties of a molecule may change quite substantially when passing from the isolated state to a solution, and computational chemistry requires the possibility of taking into account the effects of a solvent on molecular properties. These changes are mainly due to long range interactions, and electrostatics involving a large number of solvent molecules play the major role in the phenomenon and free energy changes have to be evaluated. Statistical calculations by means of usual Monte Carlo or molecular dynamics coupled with a full quantum chemical description of a sample representative of the solution is still out of reach for standard molecular modeling computations nowadays. Nevertheless, several simplified approaches are available to evaluate the free energy changes which appear when an isolated molecule, as described by standard quantum computations, undergoes the influence of a solvent and to predict the changes in the molecular properties which are the consequences of solvation. In this chapter, we develop the principles of the most usual methods that a computational chemist can find in standard codes or can implement more or less easily to approach the solvent effects in quantum chemistry investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assfeld, X. (1994). PhD Dissertation, Université Henri Poincaré, Nancy.

    Google Scholar 

  • Bakó, I., Hutter, J., & Pálinkás, G. (2006). Car-Parrinello molecular dynamics simulation of liquid formic acid. Journal of Physical Chemistry A, 110, 2188.

    Article  Google Scholar 

  • Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 102, 1995.

    Article  CAS  Google Scholar 

  • Bernal-Uruchurtu, M. I., & Ruiz-López, M. F. (2000). Basic ideas for the correction of semiempirical methods describing H-bonded systems. Chemical Physics Letters, 330, 118.

    Article  CAS  Google Scholar 

  • Bernal-Uruchurtu, M. I., Martins-Costa, M. T. C., Millot, C., & Ruiz-López, M. F. (2000). Improving description of hydrogen bonds at the semiempirical level: Water-water interactions as test case. Journal of Computational Chemistry, 21, 572.

    Article  CAS  Google Scholar 

  • Bondi, A. (1964). van der Waals volumes and radii. Journal of Physical Chemistry, 68, 441.

    Article  CAS  Google Scholar 

  • Born, M. (1920). Volumen und hydratationswärme der Ionen. Zeitschrift fur Physik, 1, 45.

    Article  CAS  Google Scholar 

  • Buckingham, A. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics, 12, 107.

    CAS  Google Scholar 

  • Buckingham, A. (1978). Basic theory of intermolecular forces: Applications to small molecules. In B. Pullman (Ed.), Intemolecular interactions, from Diatomics to Biopolymers (Vol. 1, p. 1). New York: Wiley.

    Google Scholar 

  • Cancès, E., Menucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. Journal of Chemical Physics, 107, 3032.

    Article  Google Scholar 

  • Catak, S., Monard, G., Aviyente, V., & Ruiz-López, M. F. (2009). Deamidation of asparagine residues: Direct hydrolysis versus succinimide-mediated deamidation mechanisms. Journal of Physical Chemistry A, 113, 1111.

    Article  CAS  Google Scholar 

  • Car, R., & Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, 55, 2471.

    Article  CAS  Google Scholar 

  • Chandler, D., & Andersen, H. C. (1972). Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. Journal of Chemical Physics, 57, 1930.

    Article  CAS  Google Scholar 

  • Cramer, C. J., & Truhlar, D. G. (1991). Molecular orbital theory calculations of aqueous solvation effects on chemical equilibria. Journal of the American Chemical Society, 113, 8552.

    Article  CAS  Google Scholar 

  • Cramer, C. J., & Truhlar, D. G. (2008). A universal approach to solvation modeling. Accounts of Chemical Research, 41, 760.

    Article  CAS  Google Scholar 

  • Cummins, P. L., & Gready, J. E. (1997). Coupled semiempirical molecular orbital and molecular mechanics model (QM/MM) for organic molecules in aqueous solution. Journal of Computational Chemistry, 18, 1496.

    Article  CAS  Google Scholar 

  • Dixon, S. L., & Merz, K. M., Jr. (1996). Semiempirical molecular orbital calculations with linear system size scaling. Journal of Chemical Physics, 104, 6643.

    Article  CAS  Google Scholar 

  • Dixon, S. L., & Merz, K. M., Jr. (1997). Fast, accurate semiempirical molecular orbital calculations for macromolecules. Journal of Chemical Physics, 107, 879.

    Article  CAS  Google Scholar 

  • Florián, J., & Warshel, A. (1997). Langevin dipoles model for ab initio calculations of chemical processes in solution: Parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. Journal of Physical Chemistry B, 101, 5583.

    Article  Google Scholar 

  • Florián, J., & Warshel, A. (1999). Calculations of hydration entropies of hydrophobic, polar, and ionic solutes in the framework of the langevin dipoles solvation model. Journal of Physical Chemistry B, 103, 10282.

    Article  Google Scholar 

  • Freindorf, M., & Gao, J. (1996). Optimization of the Lennard-Jones parameters for a combined ab initio quantum mechanical and molecular mechanical potential using the 3-21G basis set. Journal of Computational Chemistry, 17, 386.

    Article  CAS  Google Scholar 

  • Freindorf, M., Shao, Y., Furlani, T. R., & Kong, J. (2005). Lennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential. Journal of Computational Chemistry, 26, 1270.

    Article  CAS  Google Scholar 

  • Gao, D., Svoronos, P., Wong, P. K., Maddalena, D., Hwang, J., & Walker, H. (2005). pK a of acetate in water: A computational study. Journal of Physical Chemistry A, 109, 10776.

    Article  CAS  Google Scholar 

  • Geerke, D. P., Thiel, S., Thiel, W., & van Gusteren, W. F. (2008). QM–MM interactions in simulations of liquid water using combined semi-empirical/classical Hamiltonians. Physical Chemistry Chemical Physics, 10, 297.

    Article  CAS  Google Scholar 

  • Giese, T. J., & York, D. M. (2007). Charge-dependent model for many-body polarization, exchange, and dispersion interactions in hybrid quantum mechanical/molecular mechanical calculations. Journal of Chemical Physics, 127, 194101.

    Article  Google Scholar 

  • Hansen, J. P., & McDonald, I. R. (1976). Theory of simple liquids. London: Academic Press.

    Google Scholar 

  • Harb, W., Bernal-Uruchurtu, M., & Ruiz-López, M. (2004). An improved semiempirical method for hydrated systems. Theoretical Chemistry Accounts, 112, 204.

    Article  CAS  Google Scholar 

  • Hirata, F. (2003). Molecular theory of solvation. Dordrecht: Kluwer.

    Google Scholar 

  • Hirata, F., & Rossky, P. J. (1982). Application of an extended RISM equation to dipolar and quadrupolar fluids. Journal of Chemical Physics, 77, 509.

    Article  CAS  Google Scholar 

  • Hu, H., & Yang, W. (2009). Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. Journal of Molecular Structure THEOCHEM, 898, 17.

    Article  CAS  Google Scholar 

  • Hu, H., Lu, Z., Elsner, M., Hermans, J., & Yang, W. (2007). Simulating water with the self-consistent-charge density functional tight binding method: From molecular clusters to the liquid state. Journal of Physical Chemistry A, 111, 5685.

    Article  CAS  Google Scholar 

  • Izvekov,S.,&Voth,G. A.(2002).Car-Parrinellomoleculardynamicssimulation of liquid water: New results. Journal of Chemical Physics, 116, 10372.

    Article  CAS  Google Scholar 

  • Kerdcharoen, T., & Morokuma, K. (2002). ONIOM-XS: An extension of the ONIOM method for molecular simulation in condensed phase. Chemical Physics Letters, 355, 257.

    Article  CAS  Google Scholar 

  • Kerdcharoen, T., & Morokuma, K. (2003). Combined quantum mechanics and molecular mechanics simulation of Ca2 +/ammonia solution based on the ONIOM-XS method: Octahedral coordination and implication to biology. Journal of Chemical Physics, 118, 8856.

    Article  CAS  Google Scholar 

  • Kirkwood, J. (1934). Theory of solutions of molecules containing widely separated charges with special application to zwitterions. Journal of Chemical Physics, 2, 351.

    Article  CAS  Google Scholar 

  • Klamt, A., & Schüürmann, G. (1993). COSMO – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society Perkin Transactions, 2, 799.

    Article  Google Scholar 

  • Kongsted, J., Osted, A., & Mikkelsen, K. V. (2003). Coupled cluster/molecular mechanics method: Implementation and application to liquid water. Journal of Physical Chemistry A, 107, 2578.

    Article  CAS  Google Scholar 

  • Kongsted, J., Söderhjelm, P., & Ryde, U. (2009). How accurate are continuum solvation models for drug-like molecules? The Journal of Computer-Aided Molecular Design, 23, 395.

    Article  CAS  Google Scholar 

  • Kuo, I.-F. W., Mundy, C. J., McGrath, M. J., & Siepmann, J. I. (2006). Time-dependent properties of liquid water: A comparison of Car-Parrinello and Born-Oppenheimer molecular dynamics simulations. Journal of Chemical Theory and Computation, 2, 1274.

    Article  CAS  Google Scholar 

  • Laino, T., Mohamed, F., Laio, A., & Parrinello, M. (2006). An efficient linear-Scaling electrostatic coupling for treating periodic boundary conditions in QM/MM simulations. Journal of Chemical Theory and Computation, 2, 1370.

    Article  CAS  Google Scholar 

  • Laio, A., VandeVondele, J., & Rothlisberger, U. (2002). A Hamiltonian electrostatic coupling scheme for hybrid Car–Parrinello molecular dynamics simulations. Journal of Chemical Physics, 116, 6941.

    Article  CAS  Google Scholar 

  • Langevin, P. (1905). Magnétisme et Théorie des électrons. Annales de Chimie-Physique, 8, 70.

    Google Scholar 

  • Luque, F. J., Reuter, N., Cartier, A., & Ruiz-López, M. F. (2000). Calibration of the Quantum/Classical Hamiltonian in Semiempirical QM/MM AM1 and PM3 Methods. Journal of Physical Chemistry A, 104, 10923.

    Article  CAS  Google Scholar 

  • Luque, F., Curutchet, C., Muñoz-Muriedas, J., Bidon-Chanal, A., Sorietas, I., Morreale, A., Gelpi, J. L., & Orozco, M. (2003). Continuum solvation models: Dissecting the free energy of solvation. Physical Chemistry Chemical Physics, 5, 3827.

    Article  Google Scholar 

  • Marten, B., Kim, K., Cortis, C., Friesner, R. A., Murphy, R. B., Rignalda, M. N., Sitkoff, D., & Honig, B. (1996). New model for calculation of solvation free energies: Correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding effects. Journal of Physical Chemistry, 100, 11775.

    Article  CAS  Google Scholar 

  • Martín, M. E., Aguilar, M. A., Chalmet, S., & Ruiz-López, M. F. (2002). An iterative procedure to determine Lennard-Jones parameters for their use in quantum mechanics/molecular mechanics liquid state simulations. Chemical Physics, 284, 607.

    Article  Google Scholar 

  • Marx, D., & Hutter, J. (2000). Ab initio molecular dynamics: Theory and Implementation. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry, (p. 301). Jülich: John von Neumann Institute for Computing, NIC series.

    Google Scholar 

  • Miertus, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117.

    Article  CAS  Google Scholar 

  • Monard, G., Bernal-Uruchurtu, M. I., van der Vaart, A., Merz, K. M., Jr., & Ruiz-López, M. F. (2005). Simulation of liquid water using semiempirical hamiltonians and the divide and conquer approach. Journal of Physical Chemistry A, 109, 3425.

    Article  CAS  Google Scholar 

  • Monard, G., Prat-Resina, X., González-Lafont, A., & Lluch, J. M. (2003). Determination of enzymatic reaction pathways using QM/MM methods. International Journal of Quantum Chemistry, 93, 229.

    Article  CAS  Google Scholar 

  • Nam, K., Gao, J., & York, D. M. (2005). An efficient linear-scaling ewald method for long-range electrostatic interactions in combined QM/MM calculations. Journal of Chemical Theory and Computation, 1, 2.

    Article  CAS  Google Scholar 

  • Onsager, L. (1936). Electric moments of molecules in liquids. Journal of the American Chemical Society, 58, 1486.

    Article  CAS  Google Scholar 

  • Pascual-Ahuir, J. L., & Silla, E. J. (1990). GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set. Journal of Computational Chemistry, 11, 1047.

    Article  CAS  Google Scholar 

  • Reichardt, C. (1979). Solvent effects in organic chemistry. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Riccardi, D., Li, G., & Cui, Q. (2004). Importance of van der Waals Interactions in QM/MM Simulations. Journal of Physical Chemistry B, 108, 6467.

    Article  CAS  Google Scholar 

  • Rinaldi, D., & Rivail, J. L. (1973). Polarisabilites moléculaires et effet diélectrique de milieu í l’état liquide. Étude théorique de la molécule d’eau et de ses diméres. Theoretica Chimica Acta, 32, 57.

    Article  CAS  Google Scholar 

  • Rinaldi, D., Ruiz-López, M. F., & Rivail, J. L. (1983). Ab initio SCF calculations on electrostatically solvated molecules using a deformable three axes ellipsoidal cavity. Journal of Chemical Physics, 78, 834.

    Article  CAS  Google Scholar 

  • Rinaldi, D., Bouchy, A., Rivail, J. L., & Dillet, V. (2004). A self-consistent reaction field model of solvation using distributed multipoles. I. Energy and energy derivatives. Journal of Chemical Physics, 120, 2343.

    Article  CAS  Google Scholar 

  • Rinaldi, D., Bouchy, A., & Rivail, J. L. (2006). A self-consistent reaction field model of solvation using distributed multipoles. II: Second energy derivatives and application to vibrational spectra. Theoretical Chemistry Accounts, 116, 664.

    Article  CAS  Google Scholar 

  • Rivail, J., & Rinaldi, D. (1996). Liquid-state quantum chemistry: Computational applications of the polarizable continuum models. In J. Leszczynski (Ed.), Computational chemistry, review of current trends (p. 139). Singapore: World Scientific Publishing.

    Chapter  Google Scholar 

  • Rivail, J. L., & Terryn, B. (1982). Free-energy of an electric charge distribution separated from an infinite dielectric medium by a 3 axes ellipsoidal cavity – application to the study of molecular solvation. Journal of Chemical Physics, 79, 1.

    CAS  Google Scholar 

  • Roca, M., Messer, B., & Warshel, A. (2007). Electrostatic contributions to protein stability and folding energy. FEBS Letters, 581, 2065.

    Article  CAS  Google Scholar 

  • Silla, E. J., Tuñón, I., & Pascual-Ahuir, J. L. (1991). GEPOL: An improved description of molecular surfaces II. Computing the molecular area and volume. Journal of Computational Chemistry, 12, 1077.

    Article  CAS  Google Scholar 

  • Sumner, I., & Iyengar, S. S. (2008). Combining quantum wavepacket ab initio molecular dynamics with QM/MM and QM/QM techniques: Implementation blending ONIOM and empirical valence bond theory. Journal of Chemical Physics, 129, 054109.

    Article  Google Scholar 

  • Tannor, D. J., Marten, B., Friesner, R. M. R. A., Sitkoff, D., Nicholls, A., Rignalda, M., Goddard, W., & Honig, B. (1994). Accurate first principles calculation of molecular charge distributions and solvation energies from Ab Initio quantum mechanics and continuum dielectric theory. Journal of American Chemical Society, 116, 11875.

    Article  CAS  Google Scholar 

  • Ten-no, S., Hirata, F., & Kato, S. (1993). A hybrid approach for the solvent effect on the electronic structure of a solute based on the RISM and Hartree-Fock equations. Chemical Physics Letters, 214, 391.

    Article  CAS  Google Scholar 

  • Ten-no, S., Hirata, F., & Kato, S. (1994). Reference interaction site model self-consistent field study for solvation effect on carbonyl compounds in aqueous solution. Journal of Chemical Physics, 100, 7443.

    Article  CAS  Google Scholar 

  • Todorova, T., Seitsonen, A. P., Hutter, J., Kuo, I.-F. W., & Mundy, C. J. (2006). Molecular dynamics simulation of liquid water: Hybrid density functionals. Journal of Physical Chemistry B, 110, 3685.

    Article  CAS  Google Scholar 

  • Tomasi,J.(2004). Thirtyyearsofcontinuumsolvationchemistry:Areview,and prospects for the near future. Theoretical Chemistry Accounts, 112, 184.

    Article  CAS  Google Scholar 

  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105, 2999.

    Article  CAS  Google Scholar 

  • Tongraar, A., Liedl, K. R., & Rode, B. M. (1998). Born-Oppenheimer ab initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects. Journal of Physical Chemistry A, 102, 10340.

    Article  CAS  Google Scholar 

  • Tongraar, A., & Rode, B. M. (2004). Dynamical properties of water molecules in the hydration shells of Na+ and K+: Ab initio QM/MM molecular dynamics simulations. Chemical Physics Letters, 385, 378.

    Article  CAS  Google Scholar 

  • VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., & Hutter, J. (2005). Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Computer Physics Communications, 167, 103.

    Article  CAS  Google Scholar 

  • Warshel, A. (1991). Computer modeling of chemical reactions in enzymes and solutions. New York: Wiley.

    Google Scholar 

  • Warshel, A., & Russel, S. T. (1984). Calculations of electrostatic interactions in biological systems and in solutions. Quarterly Review of Biophysics, 17, 283.

    Article  CAS  Google Scholar 

  • Warshel, A., Sharma, P. K., Kato, M., & Parson, W. W. (2006). Modeling electrostatic effects in proteins. Biochimica et Biophysica Acta, 1764, 1647.

    Article  CAS  Google Scholar 

  • Woods, C. J., Manby, F. R., & Mulholland, A. J. (2008). An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. Journal of Chemical Physics, 128, 014109.

    Article  Google Scholar 

  • Yamabe, S., Minato, T., & Inagaki, S. (1988). Ab initio structures of transition-states in electrophilic addition-reactions of molecular halogens with ethene. Journal of the Chemical Society Chemical Communications, 532, 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Monard, G., Rivail, JL. (2012). Solvent Effects in Quantum Chemistry. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_15

Download citation

Publish with us

Policies and ethics