Skip to main content

Nonlinear Flight Control Techniques for Unmanned Aerial Vehicles

  • Reference work entry
  • First Online:
Handbook of Unmanned Aerial Vehicles

Abstract

In order to meet increasing demands on performance and reliability of unmanned aerial vehicles, nonlinear and adaptive control techniques are often utilized. These techniques are actively being studied to handle nonlinear aerodynamic and kinematic effects, actuator saturations and rate limitations, modeling uncertainty, and time-varying dynamics. This chapter presents an overview of some tools and techniques used for designing nonlinear flight controllers for UAVs. A brief overview of Lyapunov stability theory is provided. Nonlinear control techniques covered include gain scheduling, model predictive control, backstepping, dynamic inversion-based control, model reference adaptive control, and model-based fault-tolerant control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P. Abbeel, A. Coates, M. Quigley, A.Y. Ng, An application of reinforcement learning to aerobatic helicopter flight, in Advances in Neural Information Processing Systems (NIPS) (MIT, Cambridge/London, 2007), p. 2007

    Google Scholar 

  • P. Abbeel, A. Coates, A.Y. Ng, Autonomous helicopter aerobatics through apprenticeship learning. Int. J. Robot. Res. 29(13), 1608–1639 (2010)

    Article  Google Scholar 

  • V. Adetola, D. DeHaan, M. Guay, Adaptive model predictive control for constrained nonlinear systems. Syst. Control Lett. 58(5), 320–326 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • K.J. Aström, B. Wittenmark, Adaptive Control (Addison-Weseley, Reading, 1995)

    MATH  Google Scholar 

  • G. Balas, J. Bokor, Z. Szabo, Invariant subspaces for lpv systems and their applications. IEEE Trans. Autom. Control 48(11), 2065–2069 (2003)

    Article  MathSciNet  Google Scholar 

  • A. Bemporad, Reducing conservativeness in predictive control of constrained systems with disturbances, in Proceedings of the 37th IEEE Conference on Decision and Control, 1998, vol. 2, (IEEE, Piscataway, 1998), pp. 1384–1389

    Google Scholar 

  • J.D. Boskovic, R. Prasanth, R.K. Mehra, Retrofit fault-tolerant flight control design under control effector damage. AIAA J. Guid. Control Dyn. 30(3), 703–712 (2007)

    Article  Google Scholar 

  • S. Boyd, S. Sastry, Necessary and sufficient conditions for parameter convergence in adaptive control. Automatica 22(6), 629–639 (1986)

    Article  Google Scholar 

  • S. Boyd, E.G. Laurent, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control. Studies in Applied Mathematics (SIAM, Philadelphia, 1994)

    Book  Google Scholar 

  • M.S. Branicky, Multiple lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • A.J. Calise, R.T. Rysdyk, Nonlinear adaptive flight control using neural networks. IEEE Control Syst. Mag. 18(6), 14–25 (1998)

    Article  Google Scholar 

  • A.J. Calise, T. Yucelen, Adaptive loop transfer recovery. J. Guid. Control Dyn. 35(3), 807–815 (2012). doi:10.2514/1.55835

    Article  Google Scholar 

  • E.F. Camacho, C. Bordons, Model Predictive Control (Springer, London, 1999)

    Book  Google Scholar 

  • C. Cao, N. Hovakimyan, Design and analysis of a novel adaptive control architecture with guaranteed transient performance. IEEE Trans. Autom. Control 53(2), 586–591 (2008)

    Article  MathSciNet  Google Scholar 

  • L. Chisci, P. Falugi, G. Zappa, Predictive control for constrained systems with polytopic uncertainty, in Proceedings of the 2001 American Control Conference, 2001, vol. 4 (American Automatic Control Council, Evanston, 2001), pp. 3073–3078

    Google Scholar 

  • G. Chowdhary, E.N. Johnson, Concurrent learning for convergence in adaptive control without persistency of excitation, in 49th IEEE Conference on Decision and Control (Institute of Electrical and Electronics Engineers, Piscataway, 2010)

    Google Scholar 

  • G. Chowdhary, E.N. Johnson, Theory and flight test validation of a concurrent learning adaptive controller. J. Guid. Control Dyn. 34(2), 592–607 (2011)

    Article  Google Scholar 

  • G. Chowdhary, S. Lorenz, Non-linear model identification for a miniature rotorcraft, preliminary results, in American Helciopter Society 61st Annual Forum (American Helicopter Society, 2005)

    Google Scholar 

  • G. Chowdhary, E.N. Johnson, S.M. Kimbrell, R. Chandramohan, A.J. Calise, Flight test results of adaptive controllers in the presence of significant aircraft faults, in AIAA Guidance Navigation and Control Conference, Toronto, Canada, 2010. Invited

    Google Scholar 

  • G. Chowdhary, E.N. Johnson, R. Chandramohan, M.S. Kimbrell, A. Calise, H. Jeong, Autonomous guidance and control of an airplane under severe damage, in AIAA Infotech@Aerospace (American Institute of Aeronautics and Astronautics, Reston, 2011). AIAA-2011-1428

    Google Scholar 

  • G. Chowdhary, E.N. Johnson, R. Chandramohan, S.M. Kimbrell, A. Calise, Autonomous guidance and control of airplanes under actuator failures and severe structural damage. J. Guid. Control Dyn. (2012, in-press)

    Google Scholar 

  • L.D. Crider, Control of Commercial Aircraft with Vertical Tail Loss, in AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum, Chicago, IL, USA, 20–22 Sept. 2004. pp. 1–11 (2004)

    Google Scholar 

  • M. Cutler, J.P. How, Actuator constrained trajectory generation and control for variable-pitch quadrotors, in AIAA Guidance, Navigation, and Control Conference (GNC), Minneapolis,Minnesota, August 2012 (submitted)

    Google Scholar 

  • F.A. Cuzzola, J.C. Geromel, M. Morari, An improved approach for constrained robust model predictive control. Automatica 38(7), 1183–1189 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • H. Demircioglu, E. Karasu, Generalized predictive control. a practical application and comparison of discrete- and continuous-time versions. IEEE Control Syst. Mag. 20(5), 36 –47 (2000)

    Article  Google Scholar 

  • W. Dunbar, Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Trans. Robot. 52, 1249–1263 (2007)

    MathSciNet  Google Scholar 

  • W.B. Dunbar, R. Murray, Model predictive control of coordinated multi-vehicle formations, in IEEE Conference on Decision and Control (CDC) (IEEE, 2002), pp. 4631–4636

    Google Scholar 

  • W.B. Dunbar, R.M. Murray, Receding horizon control of multi-vehicle formation: a distributed implementation, in IEEE Conference on Decision and Control (CDC) (2004)

    Google Scholar 

  • D. Ernst, M. Glavic, F. Capitanescu, L. Wehenkel, Model predictive control and reinforcement learning as two complementary frameworks, in Proceedings of the 13th IFAC Workshop on Control Applications of Optimisation, Cachan, France, 2006

    Google Scholar 

  • W. Favoreel, B. De Moor, P. Van Overschee, M. Gevers, Model-free subspace-based lqg-design, in Proceedings of the 1999 American Control Conference, 1999, vol. 5 (IEEE, Piscataway, 1999),pp. 3372–3376

    Google Scholar 

  • R. Findeisen, L. Imsland, F. Allgower, B.A. Foss, Output feedback stabilization of constrained systems with nonlinear predictive control. Int. J. Robust Nonlinear Control 13, 211–227 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • H. Fukushima, T.-H. Kim, T. Sugie, Adaptive model predictive control for a class of constrained linear systems based on the comparison model. Automatica 43(2), 301–308 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali, The lmi control toolbox, in IEEE Conference on Decision and Control (CDC), vol. 3 (IEEE, Piscataway, 1994), pp. 2038–2041

    Google Scholar 

  • V. Gavrilets, B. Mettler, E. Feron, Human-inspired control logic for automated maneuvering of miniature helicopter. AIAA J. Guid. Control Dyn. 27(5), 752–759 (2004)

    Article  Google Scholar 

  • J. Gertler, U.S. unmanned aerial systems. Technical report, Congressional Research Service, January 2012. Prepared for Members and Committees of Congress (2012)

    Google Scholar 

  • W. M. Haddad, V. Chellaboina, Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach (Princeton University Press, Princeton, 2008)

    Google Scholar 

  • C. Hajiyev, F. Caliskan, Fault Diagnosis and Reconfiguration in Flight Control Systems (Kluwer Academic, Boston, 2003)

    Book  MATH  Google Scholar 

  • R. Haooouzi, M. Verhaegen, Fault-tolerant subspace predictive control applied to a boeing 747 model. J. Guid. Control Dyn. 31(4) (2008)

    Google Scholar 

  • J. Hauser, R. Hindman, Aggressive flight maneuvers, in Proccedings of the 36th Conference on Decision and Control, San Diego, CA, December 1997 (IEEE, 1997)

    Google Scholar 

  • X. He, J. Zhao, Parameter-dependent h8 filter design for lpv systems and an autopilot application. Appl. Math. Comput. 218(9), 5508–5517 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Hitachi, Damage-tolerant control system design for propulsion-controlled aircraft. Master's thesis, University of Toronto, 2009

    Google Scholar 

  • M. Idan, M.D. Johnson, A.J. Calise, A hierarchical approach to adaptive control for improved flight safety. AIAA J. Guid. Control Dyn. 25(6), 1012–1020 (2002)

    Article  Google Scholar 

  • P.A. Ioannou, J. Sun, Robust Adaptive Control (Prentice-Hall, Upper Saddle River, 1996)

    MATH  Google Scholar 

  • R. Isermann, Fault-Diagnosis Systems: An Introduction from Detection to Fault Tolerance (Springer, Berlin/New York, 2006)

    Book  Google Scholar 

  • A. Isidori, Nonlinear Control Systems, 3rd edn. (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  • R.V. Jategaonkar, Flight Vehicle System Identification a Time Domain Approach. Volume 216 of Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, Reston, 2006)

    Book  Google Scholar 

  • E.N. Johnson, Limited authority adaptive flight control. PhD thesis, Georgia Institute of Technology, Atlanta GA, 2000 E.N. Johnson, A.J. Calise, Limited authority adaptive flight control for reusable launch vehicles. AIAA J. Guid. Control Dyn. 26(6), 906–913 (2003)

    Google Scholar 

  • E.N. Johnson, A.J. Calise, Limited authority adaptive flight control for reusable launch vehicles. AIAA J. Guid. Control Dyn. 26(6), 906–913 (2003)

    Article  Google Scholar 

  • E. Johnson, S. Kannan, Adaptive trajectory control for autonomous helicopters. J. Guid. Control Dyn. 28(3), 524–538 (2005)

    Article  Google Scholar 

  • E. Johnson, M. Turbe, A. Wu, S. Kannan, Flight results of autonomous fixed-wing uav transitions to and from stationary hover, in Proceedings of the AIAA GNC Conference, August 2006 (AIAA, 2006)

    Google Scholar 

  • D.B. Jourdan, M.D. Piedmonte, V. Gavrilets, D.W. Vos, Enhancing UAV Survivability Through Damage Tolerant Control. Number August (AIAA, 2010) pp. 1–26. AIAA-2010-7548

    Google Scholar 

  • S. Kannan, Adaptive control of systems in cascade with saturation. PhD thesis, Georgia Institute of Technology, Atlanta GA, 2005

    Google Scholar 

  • S. Karra, R. Shaw, S.C. Patwardhan, S. Noronha, Adaptive model predictive control of multivari-able time-varying systems. Ind. Eng. Chem. Res. 47(8), 2708–2720 (2008)

    Article  Google Scholar 

  • E.C. Kerrigan, Robust Constraint Satisfaction Invariant Sets and Predictive Control. PhD thesis, University of Cambridge, Department of Engineering, Nov 2000

    Google Scholar 

  • E.C. Kerrigan, J.M. Maciejowski, Robust feasibility in model predictive control: necessary and sufficient conditions, in Proceedings of the 40th IEEE Conference on Decision and Control, 2001, vol. 1, pp. 728–733 (IEEE, Piscataway, 2001)

    Google Scholar 

  • E.C. Kerrigan, D.Q. Mayne, Optimal control of constrained, piecewise affine systems with bounded disturbances, in Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 2 (2002), pp. 1552–1557

    Google Scholar 

  • H.K. Khalil, Nonlinear Systems (Macmillan, New York, 2002)

    MATH  Google Scholar 

  • N. Kim, Improved methods in neural network based adaptive output feedback control, with applications to flight control. PhD thesis, Georgia Institute of Technology, Atlanta GA, 2003

    Google Scholar 

  • H.A. Kingravi, G. Chowdhary, P.A. Vela, E.N. Johnson, Reproducing kernel hilbert space approach for the online update of radial bases in neuro-adaptive control. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1130–1141 (2012)

    Article  Google Scholar 

  • P .V . Kokotović, The joy of feedback: nonlinear and adaptive. IEEE Control Syst. Mag. 12(3), 7–17 (1992)

    Article  Google Scholar 

  • S.R. Kou, D.L. Elliott, T.J. Tarn, Observability of nonlinear systems. Inf. Control 22(1), 89–99 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • E. Koyuncu, N. Ure, G. Inalhan, Integration of path/maneuver planning in complex environments for agile maneuvering ucavs. J. Intell. Robot. Syst. 57, 143–170 (2010). doi:10.1007/s10846-009-9367-1

    Article  Google Scholar 

  • M. Krstić, I. Kanellakopoulos, P. Kokotović, Nonlinear and Adaptive Control Design (Wiley, New York, 1995)

    Google Scholar 

  • A. Kutay, G.V. Chowdhary, A. Calise, E.N. Johnson, A comparision of two novel direct adaptive control methods under actuator failure accommodation, in Proceedings of the AIAA GNC Conference, Honolulu, HI (AIAA, 2008)

    Google Scholar 

  • E. Lavretsky, Combined/composite model reference adaptive control. IEEE Trans. Autom. Control 54(11), 2692–2697 (2009)

    Article  MathSciNet  Google Scholar 

  • E. Lavretsky, Reference dynamics modification in adaptive controllers for improved transient performance, in Guidance Navigation and Control Conference, Portland, OR, August 2011 (AIAA, 2011). AIAA-2011-620

    Google Scholar 

  • E. Lavertsky, K. Wise, Flight control of manned/unmanned military aircraft, in Proceedings of American Control Conference (AIAA/IEEE, Evanston, 2005)

    Google Scholar 

  • J.H. Lee, Modeling and identification for nonlinear model predictive control: requirements, current status and future research needs, in Nonlinear Model Predictive Control. Volume 26 of Progress in Systems and Control Theory (Birkhäuser, Basel-Boston-Berlin, 2000), pp. 269–294

    Chapter  Google Scholar 

  • Y.I. Lee, B. Kouvaritakis, Constrained receding horizon predictive control for systems with disturbances. Int. J. control 72(11), 1027–1032 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Y.I. Lee, B. Kouvaritakis, A linear programming approach to constrained robust predictive control. IEEE Trans. Autom. Control 45(9), 1765–1770 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • C.H. Lee, M.H. Shin, M.J. Chung, A design of gain-scheduled control for a linear parameter varying system: an application to flight control. Control Eng. Pract. 9(1), 11–21 (2001)

    Article  Google Scholar 

  • K.H. Lee, J.H. Lee, W.H. Kwon, A stabilizing low-order output feedback receding horizon control for linear discrete time-invariant systems, in Proceedings of the 2002 American Control Conference, 2002, vol. 3 (IEEE, Piscataway, 2002), pp. 2412–2417

    Google Scholar 

  • A. Levant, A. Pridor, R. Gitizadeh, I. Yaesh, J.Z. Ben-Asher, Aircraft pitch control via second order sliding techniques. J. Guid. Control Dyn. 23, 586–594 (2000)

    Article  Google Scholar 

  • F.L. Lewis, Nonlinear network structures for feedback control. Asian J. Control 1, 205–228, 1999. Special Issue on Neural Networks for Feedback Control

    Article  Google Scholar 

  • X. Li, H.H.T. Liu, A passive fault tolerant flight control for maximum allowable vertical tail damaged aircraft. J. Dyn. Syst. Meas Control 134(3), 031006. 10.1115/1.4005512

    Google Scholar 

  • D. Liberzon, Switching in Systems and Control (Birkhäuser, Boston, 2003)

    Book  MATH  Google Scholar 

  • D. Liberzon, Switched systems, in Handbook of Networked and Embedded Control Systems, (Birkhauser, Boston, 2005), pp. 559–574

    Chapter  Google Scholar 

  • T.J.J. Lombaerts, H.O. Huisman, Q.P. Chu, J.A. Mulder, D.A. Joosten, Nonlinear reconfiguring flight control based on online physical model identification, in AIAA Guidance, Navigation and Control Conference and Exhibit, 18–21 Aug 2008

    Google Scholar 

  • J. Lunze, T. Steffen, Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans. Autom. Control 51(10), 1590–1601 (2006)

    Article  MathSciNet  Google Scholar 

  • J.M. Maciejowski, Predictive Control with Constraints (Prentice Hall Publications, New York, 2002)

    Google Scholar 

  • J.-F. Magni, S. Bennani, J. Terlouw, Robust Flight Control: A Design Challenge. Lecture Notes in Control and Information Sciences 224 (Springer, London/New York, 1997)

    Book  MATH  Google Scholar 

  • V. Manikonda, P.O. Arambel, M. Gopinathan, R.K. Mehra, F.Y. Hadaegh, A model predictive control-based approach for spacecraft formation keeping and attitude control in Proceedings of the 1999 American Control Conference, 1999, vol. 6 (IEEE, Piscataway, 1999), pp. 4258–4262

    Google Scholar 

  • D.L. Marruedo, T. Alamo, E.F. Camacho, Stability analysis of systems with bounded additive uncertainties based on invariant sets: stability and feasibility of mpc, in Proceedings of the 2002. American Control Conference, 2002, vol. 1 (Piscataway, IEEE, 2002), pp. 364–369

    Google Scholar 

  • I. Masubuchi, J. Kato, M. Saeki, A. Ohara, Gain-scheduled controller design based on descriptor representation of lpv systems: application to flight vehicle control, in 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 1 (IEEE, Piscataway, 2004), pp. 815–820

    Google Scholar 

  • D.Q. Mayne, Nonlinear model predictive control: challenges and opportunities, in Nonlinear Model Predictive Control. Volume 26 of Progress in Systems and Control Theory (Birkhäuser, Basel-Boston-Berlin, 2000), pp. 23–44

    Chapter  Google Scholar 

  • D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft (Kluwer Academic, Norwell, 2003)

    Book  Google Scholar 

  • H. Michalska, D.Q. Mayne, Moving horizon observers and observer-based control. IEEE Trans. Autom. Control 40(6), 995–1006 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • E.A. Morelli, Real time parameter estimation in the frequency domain. J. Guid. Control Dyn. 23(5), 812–818 (2000)

    Article  MathSciNet  Google Scholar 

  • F. Nardi, Neural network based adaptive algorithms for nonlinear control. PhD thesis, Georgia Institute of Technology, School of Aerospace Engineering, Atlanta, GA 30332, Nov 2000

    Google Scholar 

  • K. Narendra, A. Annaswamy, A new adaptive law for robust adaptation without persistent excitation. IEEE Trans. Autom. Control 32(2), 134–145 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • K.S. Narendra, A.M. Annaswamy, Stable Adaptive Systems (Prentice-Hall, Englewood Cliffs, 1989)

    MATH  Google Scholar 

  • N. Nguyen, Asymptotic linearity of optimal control modification adaptive law with analytical stability margins, in Infotech@AIAA Conference, Atlanta, GA, 2010

    Google Scholar 

  • N. Nguyen, K. Krichnamumar, J. Kaneshige, Dynamics and adaptive control for stability recovery of damaged asymmetric aircraft, in AIAA Guidance, Navigation, and Control Conference and Exhibits, 21–24 Aug 2006 (AIAA, 2006a). AIAA-2006-6049

    Google Scholar 

  • N. Nguyen, K. Krishnakumar, J. Kaneshige, P. Nespeca, Dynamics and adaptive control for stability recovery of damaged asymmetric aircraft, in AIAA Guidance Navigation and Control Conference, Keystone, CO, 2006b

    Google Scholar 

  • N. Nguyen, K. Krishnakumar, J. Kaneshige, Flight dynamics and hybrid adaptive control of damaged aircraft. AIAA J. Guid. Control Dyn. 31(3), 751–764 (2008)

    Article  Google Scholar 

  • G.D. Nicolao, L. Magi, R. Scattolini, Stability and robustness of nonlinear receding horizon control, inNonlinear Model Predictive Control. Volume 26 of Progress in Systems and Control Theory (Birkhäuser, Basel-Boston-Berlin, 2000), pp. 3–22

    Chapter  Google Scholar 

  • H. Nijmeijer, A.J. van der Schaft, Nonlinear Dynamical Control Systems (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  • Office of the Secretary of Defense, Unmanned aircraft systems roadmap 2005–2030. Technical report, Department of Defense, Aug 2005

    Google Scholar 

  • Office of the Secretary of Defense, Unmanned aircraft systems roadmap. Technical report, OSD, 2007

    Google Scholar 

  • J. Park, I.W. Sandberg, Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  • V. Patel, C. Cao, N. Hovakimyan, K. Wise, E. Lavretsky, Adaptive controller for tailless unstable aircraft in the presence of unknown actuator failures. Int. J. Control 82(4), 705–720 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • R.J. Patton, J. Chen, Fault-tolerant control systems: the 1997 situation, in IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes (Kingston Upon Hull, United Kingdom, 1997), pp. 1033–1054

    Google Scholar 

  • I.R. Petersen, V.A. Ugrinovskii, A.V. Savkin, Robust Control Design Using H∞ Methods. Communications and Control Engineering Series (Springer, London, 2000)

    Book  Google Scholar 

  • J.-B. Pomet, L. Praly, Automatic Control, IEEE Transactions on Adaptive nonlinear regulation: estimation from the Lyapunov equation, (1992), 37(6), 729–740, doi=10.1109/9.256328

    MATH  MathSciNet  Google Scholar 

  • I.A. Raptis, K.P. Valavanis, Linear and Nonlineaer Control of Small-Scale Unmanned Helicopters. Volume 45 of International Series on Intelligent Systems, Control, and Automation: Science and Engineering (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  • J.B. Rawlings, Tutorial overview of model predictive control. IEEE Control Syst. Mag. 20(3), 38–52 (2000)

    Article  MathSciNet  Google Scholar 

  • A.G. Richards, Robust constrained model predictive control. PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge MA, February 2005

    Google Scholar 

  • A. Richards, J.P. How, Decentralized model predictive control of cooperating UAVs, in IEEE Conference on Decision and Control (CDC), Paradise Island, Bahamas, Dec 2004, pp. 4286– 4291

    Google Scholar 

  • A. Richards, J.P. How, Robust decentralized model predictive control. Int. J. Control 80(9), 1517–1531 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • L. Rodrigues, J.P. How, Observer-based control of piecewise-affine systems. Int. J. Control 76(5), 459–477 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • R.M. Sanner, J.-J.E. Slotine, Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 3(6), 837–863 (1992)

    Article  Google Scholar 

  • M.A. Santillo, D.S. Bernstein, Adaptive control based on retrospective cost optimization. J. Guid. Control Dyn. 33(2), 289–304 (2010). doi: 10.2514/1.46741

    Article  Google Scholar 

  • G.H. Shah, Aerodynamic effects and modeling of damage to transport aircraft. Technical report, NASA Langley Research Center, Hampton, VA, 2008

    Google Scholar 

  • J.S. Shamma, M. Athans, Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica 27(3), 559–564 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • I.A. Shkolnikov, Y.B. Shtessel, Aircraft nonminimal phase control in dynamic sliding manifolds. J. Guid. Control Dyn. 24, 566–573 (2001)

    Article  Google Scholar 

  • S. Skogestad, I. Postlethwaite, Multivariable Feedback Control – Analysis and Design (Wiley, Reading, 2005)

    Google Scholar 

  • J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, 1991)

    MATH  Google Scholar 

  • M. Steinberg, Historical overview of research in reconfigurable flight control. Proc. Inst. Mech. Eng. G 219(4), 263–275 (2005)

    Article  Google Scholar 

  • N. Sundararajan, P. Saratchandran, L. Yan, Fully Tuned Radial Basis Function Neural Networks for Flight Control (Kluwer academic publishers, Norwell, 2002)

    Book  MATH  Google Scholar 

  • GJ. Sutton, R.R. Bitmead, Performance and Computational Implementation of Nonlinear Model Predictive Control on a Submarine, in Nonlinear Model Predictive Control. Volume 26 of Progress in Systems and Control Theory (Birkhauser, Basel-Boston-Berlin, 2000), pp. 461–472

    Chapter  Google Scholar 

  • G. Tao, Adaptive Control Design and Analysis (Wiley, Hoboken, 2003)

    Book  MATH  Google Scholar 

  • U.S. Army UAS Center of Excellence, “Eyes of the Army” U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035, 2010

    Google Scholar 

  • K.Y. Volyanskyy, W.M. Haddad, AJ. Calise, A new neuroadaptive control architecture for nonlinear uncertain dynamical systems: beyond σ and e-modifications. IEEE Trans. Neural Netw. 20(11), 1707–1723 (2009)

    Article  Google Scholar 

  • B.R. Woodley, J.P How, R.L. Kosut, Model free subspace based hscr; infin; control, in Proceedings of the 2001 American Control Conference, 2001, vol. 4 (2001), pp. 2712–2717

    Google Scholar 

  • L. Yu, Robust Control: Linear Matrix Inequality Approach. Tshinghua University Press, in Chinese edition, 2002

    Google Scholar 

  • T. Yucelen, A. Calise, A derivative-free model reference adaptive controller for the generic transport model, in AIAA Guidance, Control and Navigation Conference, Toronto, Canada, Aug 2010. Invited

    Google Scholar 

  • Y. Zhang, J. Jang, Bibliographical review on reconfigurable fault-tolerant control systems. Elsevier Annu. Rev. Control 32(1), 229–252 (2008)

    Article  Google Scholar 

  • Zhi-sheng Zhang, Huai-min Chen, Cheng-fu Wu, Ma Song-hui, An effective terminal condition ensuring stability of mpc, in 2010 International Conference on Computer Application and System Modeling (ICCASM), vol. 7 (IEEE, Piscataway, 2010), pp. V7-202–V7-206

    Google Scholar 

  • A. Zheng, Some practical issues and possible solutions for nonlinear model predictive control, in Nonlinear Model Predictive Control. Volume 26 of Progress in Systems and Control Theory (Birkhauser, Basel-Boston-Berlin, 2000), pp. 129–144

    Chapter  Google Scholar 

  • A. Zheng, F. Allgower, Towards a practical nonlinear predictive control algorithm with guaranteed stability for large-scale systems, in Proceedings of the 1998 American Control Conference, 1998, vol. 4 (1998), pp. 2534–2538

    Google Scholar 

  • K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, Englewood Cliffs, 1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chowdhary Vinayak Girish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Girish, C.V., Emilio, F., Jonathan, H.P., Hugh, L. (2015). Nonlinear Flight Control Techniques for Unmanned Aerial Vehicles. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_87

Download citation

Publish with us

Policies and ethics