Skip to main content

Linear Flight Control Techniques for Unmanned Aerial Vehicles

  • Reference work entry
  • First Online:

Abstract

This chapter presents an overview of linear flight control and guidance methods for unmanned aerial vehicles (UAVs). The chapter begins with a discussion of rotation matrices and kinematic equations of a UAV. The six degree of freedom UAV equations of motion are also derived using rigid-body dynamics principles. The equations of motion are then linearized, and several linear multi-loop closure techniques for UAV guidance and control are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • O. Amidi, C. Thorpe, Integrated mobile robot control. Proc SPIE 1388, 505–523 (1990)

    Google Scholar 

  • G.J. Balas, J.C. Doyle, K. Glover, A. Packard, R. Smith, μ-Analysis and Synthesis Toolbox (The Math Works, Natick, 1995)

    Google Scholar 

  • G.J. Balas, A.K. Packard, J. Renfrow, C. Mullaney, R.T M‘Closkey, Control of the f-14 aircraft lateral-directional axis during powered approach. J. Guid. Control Dyn. 21(6), 899–908 (1998)

    Article  Google Scholar 

  • J.H. Blakelock, Automatic Control of Aircraft and Missiles (Wiley, New York, 1965)

    Google Scholar 

  • A.E. Bryson, Y-C. Ho, Applied Optimal Control (Blaisdell Publishing Company, Waltham, 1969)

    Google Scholar 

  • H. Chao, Y. Cao, YQ. Chen, Autopilots for small fixed-wing unmanned air vehicles: a survey, in International Conference on Mechatronics and Automation, 2007. ICMA 2007 (IEEE, Piscataway, 2007), pp. 3144–3149

    Chapter  Google Scholar 

  • N.A. Chaturvedi, A.K. Sanyal, N.H. McClamroch, Rigid-body attitude control. IEEE Control Syst. 31(3), 30–51 (2011)

    Article  MathSciNet  Google Scholar 

  • C.T Chen, Linear System Theory and Design (Saunders College Publishing, Fort Worth, 1984)

    Google Scholar 

  • R.Y Chiang, M.G. Safonov, Robust Control Toolbox for Use with MATLAB®: User's Guide (MathWorks, Natick, 1997). Incorporated

    Google Scholar 

  • G. Chowdhary, R. Jategaonkar, Parameter estimation from flight data applying extended and unscented kalman filter. J. Aerosp. Sci. Technol. (2009). doi: 10.1016/j.ast.2009.10.003

    Google Scholar 

  • G. Chowdhary, E.N. Johnson, R. Chandramohan, M.S. Kimbrell, A. Calise, H. Jeong, Autonomous guidance and control of an airplane under severe damage, in AIAA Infotech@ Aerospace, 2011. AIAA-2011–1428

    Google Scholar 

  • R.V. Cowlagi, P. Tsiotras, Shortest distance problems in graphs using history-dependent transition costs with application to kinodynamic path planning, in Proceedings of the American Control Conference, St. Louis, 2009, pp. 414–419

    Google Scholar 

  • R.V. Cowlagi, P. Tsiotras, Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles. IEEE Trans. Robot. 28(2), 379–395 (2012)

    Article  Google Scholar 

  • J.L. Crassidis, J.L. Junkins, Optimal Estimation of Dynamic Systems (Chapman & Hall/CRC, oca Raton, 2004)

    Book  MATH  Google Scholar 

  • M. Cutler, J.P How, Actuator constrained trajectory generation and control for variable-pitch quadrotors, in AIAA Guidance, Navigation, and Control Conference (GNC), Minneapolis, Aug 2012. (submitted)

    Google Scholar 

  • R.C. Dorf, R.H. Bishop, Modern Control Systems. (Addison-Wesley, Reading, 1995)

    Google Scholar 

  • J.C. Doyle, Guaranteed margins for LQG regulators. IEEE Trans. Autom. Control AC-23(4), 756–757 (1978)

    Article  Google Scholar 

  • B. Etkin, Dynamics of Flight: Stability and Control, 2nd edn. (Wiley, New York, 1982)

    Google Scholar 

  • B. Etkin, L.D. Reid, Dynamics of Flight, Stability and Control (Wiley, New York, 1996)

    Google Scholar 

  • G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems (Addison-Wesley, Reading, 1994)

    Google Scholar 

  • J. Gadewadikar, F.L. Lewis, K. Subbarao, K. Peng, B.M. Chen, H-infinity static output-feedback control for rotorcraft. J. Intell. Robot. Syst. 54(4), 629–646 (2009)

    Article  Google Scholar 

  • P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali, The lmi control toolbox, in IEEE Conference on Decision and Control (CDC), vol. 3 (IEEE, New York, 1994), pp. 2038–2041

    Google Scholar 

  • A. Gelb, Applied Optimal Estimation (MIT (QA402.A5), Cambridge, 1974)

    Google Scholar 

  • M. Green, D.J. Limbeer, Linear Robust Control (Prentice Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  • J.K. Hall, N.B. Knoebel, T.W. McLain, Quaternion attitude estimation for miniature air vehicles using a multiplicative extended kalman filter, in IEEE/ION Position, Location and Navigation Symposium, Monterey, May 2008, pp. 1230–1237

    Google Scholar 

  • J. Hu, C. Bohn, H.R. Wu, Systematic h [infinity] weighting function selection and its application to the real-time control of a vertical take-off aircraft. Control Eng. Pract. 8(3), 241–252 (2000)

    Article  Google Scholar 

  • R.A. Hyde, H-Infinity Aerospace Control Design- A VSTOL Flight Application. (Springer, Berlin/New York, 1995)

    Book  Google Scholar 

  • E. Johnson, S. Kannan, Adaptive trajectory control for autonomous helicopters. J. Guid. Control Dyn. 28(3), 524–538 (2005)

    Article  Google Scholar 

  • E. King, Y. Kuwata, J.P. How, Experimental demonstration of coordinated control for multi-vehicle teams. Int. J. Syst. Sci. 37(6), 385–398 (2006)

    Article  MATH  Google Scholar 

  • N. Knoebel, Adaptive control of a miniature tailsitter UAV. Master's, thesis, Brigham Young University, Dec 2007

    Google Scholar 

  • J.B. Kuipers, ternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Realityinceton University Press, Princeton, 2002)

    Google Scholar 

  • B.C. Kuo, Automatic Control Systems (Prentice-Hall, Englewood Cliffs, 1991)

    Google Scholar 

  • H. Kwakernaak, R. Sivan, Linear Optimal Control Systems (Wiley, New York, 1972)

    MATH  Google Scholar 

  • D.A. Lawrence, Lyapunov vector fields for UAV flock coordination, in 2nd AIAA Unmanned Unlimited Systems, Technologies, and Operations – Aerospace, Land, and Sea Conference, Workshop and Exhibition, San Diego, 2003

    Google Scholar 

  • D. Lawrence, E.W. Frew, J.W. Pisano, Vector fields for autonomous unmanned aircraft flight control. J. Guid. Control 31(5), 1220–1229 (2008)

    Article  Google Scholar 

  • W. Levine (ed.), The Control Handbook (CRC, Boca Raton, 1996)

    MATH  Google Scholar 

  • F.L. Lewis, Optimal Estimation (Wiley, New York, 1986)

    MATH  Google Scholar 

  • J.M. Maciejowski, Multivariable Feedback Design (Addison-Wesley, Reading, 1989)

    MATH  Google Scholar 

  • C.G. Mayhew, R.G. Sanfelice, A.R. Teel, On quaternion-based attitude control and the unwinding phenomenon, in American Control Conference (ACC), 2011, San Francisco, 29 June 2011–1 July 2011, pp. 299–304

    Google Scholar 

  • D. McFarlane, K. Glover, A Loop Shaping Design Procedure Using ℋ∞ Synthesis. IEEE Trans. Autom. Control 37(6), 759–769 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • B. Mettler, Modeling Identification and Characteristics of Miniature Rotorcrafts (Kluwer, Boston, 2003)

    Book  Google Scholar 

  • B. Michini, Modeling and adaptive control of indoor unmanned aerial vehicles. Master's thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, Sept 2009

    Google Scholar 

  • D.J. Moorhouse, R.J. Woodcock, Background Information and User Guide for MIL-F-8785C, Military Specification-Flying Qualities of Piloted Airplanes. Technical report, Wright-Patterson AFB, OH, 1982

    Google Scholar 

  • R.C. Nelson, S.E. Smith, Flight Stability and Automatic Control (McGraw-Hill, New York, 1989)

    Google Scholar 

  • D.R. Nelson, D.B. Barber, T.W. McLain, R.W. Beard, Vector field path following for small unmanned air vehicles, in American Control Conference (ACC), Minneapolis, June 2006

    Google Scholar 

  • M. Niculesu, Lateral track control law for aerosonde UAV, in Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, Reno, Jan 2001

    Google Scholar 

  • A. Ollero, G. Heredia, Stability analysis of mobile robot path tracking, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, 1995, pp. 461–466

    Google Scholar 

  • H. özbay, Introduction to Feedback Control Theory (CRC, Boca Raton, 2000)

    Google Scholar 

  • S. Park, J. Deyst, J. P. How, A new nonlinear guidance logic for trajectory tracking, in AIAA Guidance, Navigation, and Control Conference (GNC), Providence, Aug 2004 (AIAA 2004– 4900)

    Google Scholar 

  • S. Park, J. Deyst, J.P. How, Performance and lyapunov stability of a nonlinear path-following guidance method. AIAA J. Guid. Control Dyn. 30(6), 1718–1728 (2007)

    Article  Google Scholar 

  • J. Reiner, G. Balas, W. Garrard, Design of a flight control system for a highly maneuverable aircraft using mu synthesis, in AIAA Guidance, Navigation and Control Conference, Monterey, 1993, pp. 710–719

    Google Scholar 

  • A. Richards, J.P. How, Aircraft trajectory planning with collision avoidance using mixed integer linear programming, in American Control Conference (ACC), Anchorage, vol. 3, 2002, pp. 1936–1941

    Google Scholar 

  • A. Richards, J.P. How, Decentralized model predictive control of cooperating UAVs, in IEEE Conference on Decision and Control (CDC), Paradise Island, Dec 2004, pp. 4286–4291

    Google Scholar 

  • M. Sadraey, R. Colgren, Two dof robust nonlinear autopilot design for a small uav using a combination of dynamic inversion and loop shaping, in AIAA Guidance Navigation and Control Conference, San Francisco, vol. 2, 2005, pp. 5518–5537

    Google Scholar 

  • D. Simon, Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches (Wiley-Interscience, Hoboken, 2006)

    Book  Google Scholar 

  • S. Skogestad, I. Postlethwaite, Multivariable Feedback Control – Analysis and Design (Wiley,Hoboken, 2005)

    Google Scholar 

  • F. Sobolic, Agile flight control techniques for a fixed-wing aircraft. Master's thesis, MIT Department Of Aeronautics and Astronuatics, 2009

    Google Scholar 

  • R.F. Stengel, Optimal Control and Estimation (Dover, New York, 1994)

    MATH  Google Scholar 

  • R.F. Stengel, Flight Dynamics (Princeton University Press, Princeton, 2004)

    Google Scholar 

  • B.L. Stevens, F.L. Lewis, Aircraft Control and Simulation, 2 edn. (Wiley, Hoboken, 2003)

    Google Scholar 

  • F.B. Tatom, S.R. Smith, Simulation of atmospheric turbulent gusts and gust gradients. J. Aircr. 19(04), 264–271 (1981)

    Article  Google Scholar 

  • B. Wie, P.M. Barba, Quaternion feedback for spacecraft large angle maneuvers. AIAA J. Guid. Control Dyn. 8, 360–365 (1985)

    Article  MATH  Google Scholar 

  • Y. Zhao, P. Tsiotras, Time-optimal parameterization of geometric path for fixed-wing aircraft, in AIAA@Infotech conference, Atlanta (AIAA, 2010). AIAA-2010-3352

    Google Scholar 

  • K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, Englewood Cliffs, 1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. How .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

How, J.P., Frazzoli, E., Chowdhary, G.V. (2015). Linear Flight Control Techniques for Unmanned Aerial Vehicles. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_49

Download citation

Publish with us

Policies and ethics