Skip to main content

Layered Approach to Networked Command and Control of Complex UAS

  • Reference work entry
  • First Online:
Handbook of Unmanned Aerial Vehicles

Abstract

Different networking hardware, protocols, and sensors can be combined to create a diverse and complex unmanned aircraft system through a layered design approach with modular supporting software. A layered design simplifies both testing and system reconfiguration, lending itself to incremental verification while only requiring the maintenance of standard interfaces. Critical software components, such as service discovery, simplify the inclusion of a diverse set of subsystems and sensors. Maintaining the modularity of these software components ensures that the system can be expanded while requiring minimal software changes. An example of these design approaches is provided through the description of a system that enabled flight operations of a multi-vehicle unmanned aircraft system for performing targeted, in situ sampling of supercell thunderstorms during the 2010 VORTEX2 field campaign. This network's flexible nature facilitated the complex interworking of many subsystems while accommodating the strict deployment time constraints and generally unknown starting configurations typical of nomadic field operations. Data required for situ-ational awareness and mission-level decision making was retrieved from multiple remote and local sources, and mechanisms were provided for dissemination to any local participant. The architecture's modular design allowed for changes in the field and actively supported the addition and subtraction of nodes without requiring reconfiguration of the remainder of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Abolhasan, B. Hagelstein, J.C.-P. Wang, Real-world performance of current proactive multi-hop mesh protocols, in Proceedings of the IEEE Asia Pacific Conference on Communications, Shanghai (IEEE, Piscataway, 2009)

    Google Scholar 

  • M. Alighanbari, J.P. How, Robust decentralized task assignment for cooperative uavs, in Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference, Keystone, vol. 5 (AIAA, Reston, 2006), pp. 3232–3247

    Google Scholar 

  • J. Allred, A.B. Hasan, S. Panichsakul, W. Pisano, P. Gray, J. Huang, R. Han, D. Lawrence, K. Mohseni, Sensorflock: an airborne wireless sensor network of micro-air vehicles, in Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, Sydney (ACM, New York, 2007), pp. 117–129

    Chapter  Google Scholar 

  • AODV-UU, Ad-hoc on-demand distance vector routing (2010), http://core.it.uu.se/core/index.php/AODV-UU

  • B. Argrow, D. Lawrence, E. Rasmussen, Uav systems for sensor dispersal, telemetry, and visualization in hazardous environments, in 43rd Aerospace Sciences Meeting and Exhibit (AIAA, Reston, 2005)

    Google Scholar 

  • B.A.T.M.A.N., b.a.t.m.a.n (2010), https://www.open-mesh.org

  • R.W. Beard, T.W. McLain, D.B. Nelson, D. Kingston, D. Johanson, Decentralized cooperative aerial surveillance using fixed-wing miniature uavs. IEEE Proc. Spec. Issue Multi-Robot Syst. 94(7), 1306–1324 (2006)

    Google Scholar 

  • D. Behnke, K. Daniel, C. Wietfeld, Comparison of distributed ad-hoc network planning algorithms for autonomous flying robots, in Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, 2011, pp. 1–6 doi:10.1109/GLOCOM.2011.6134382

    Google Scholar 

  • T.X. Brown, D. Henkel, On controlled node mobility in delay-tolerant networks of unmanned aerial vehicles, in Proceedings of International Symposium on Advanced Radio Technologies (Institute for Telecommunication Sciences/National Telecommunications and Information Administration, Boulder, 2006)

    Google Scholar 

  • T.X. Brown, B.M. Argrow, E.W. Frew, C. Dixon, D. Henkel, J. Elston, H. Gates, Experiments using small unmanned aircraft to augment a mobile ad hoc network, in Emerging Technologies in Wireless LANs: Theory, Design, and Deployment, ed. by B. Bing (Cambridge University Press, Cambridge, 2007), pp. 123–145. ISBN:ISBN-13: 9780521895842. Chapter 28

    Google Scholar 

  • I.D. Chakeres, E.M. Belding-Royer, Aodv routing protocol implementation design, in ICDCSW ' 04: Proceedings of the 24th International Conference on Distributed Computing Systems Workshops – W7: EC (ICDCSW ' 04), Washington, DC (IEEE Computer Society, Los Alamitos, 2004), pp. 698–703

    Google Scholar 

  • H.C. Christmann, E.N. Johnson, Design and implementation of a self-configuring ad-hoc network for unmanned aerial systems, in AIAA Infotech@Aerospace, Rohnert Park (AIAA, Reston, 2007)

    Google Scholar 

  • Cloudcap, The cloudcap website (2011), http://cloudcaptech.com

  • K.D. Davis, Interim operation approval guidance 08–01: unmanned aircraft systems operations in the U.S. national airspace system. FAA Unmanned Aircraft Systems Program Office (2008)

    Google Scholar 

  • C. Dixon, Controlled mobility of unmanned aircraft chains to optimize network capacity in realistic communication environments. Ph.D. thesis, University of Colorado, 2010

    Google Scholar 

  • J. Elston, Semi-autonomous small unmanned aircraft systems for sampling tornadic supercell thunderstorms. Ph.D. thesis, University of Colorado, 2011

    Google Scholar 

  • J. Elston, B. Argrow, E.W. Frew, A distributed avionics package for small uavs, in AIAA Infotech@Aerospace Conference, Arlington (AIAA, Reston, 2005)

    Google Scholar 

  • J. Elston, B. Argrow, A. Houston, J. Lahowetz, Distributed atmospheric sensing using small uas and doppler radar, in AIAA Infotech@Aerospace Conference, Seattle (AIAA, Reston, 2009a)

    Google Scholar 

  • J. Elston, E.W. Frew, D. Lawrence, P. Gray, B. Argrow, Net-centric communication and control for a heterogeneous unmanned aircraft system. J. Intell. Robot. Syst. 56(1–2), 199–232 (2009b)

    Article  MATH  Google Scholar 

  • J.S. Elston, J. Roadman, M. Stachura, B. Argrow, A. Houston, E.W. Frew, The tempest unmanned aircraft system for in situ observations of tornadic supercells: design and vortex2 flight results. J. Field Robot. 28, 461–483 (2011)

    Article  Google Scholar 

  • EnGenius Tech Inc, The engenius website (2011), http://engeniustech.com

  • E.W. Frew, D.A. Lawrence, S. Morris, Coordinated standoff tracking of moving targets using lyapunov guidance vector fields. AIAA J. Guid. Control Dyn. 31(2), 290–306 (2008)

    Article  Google Scholar 

  • E.W. Frew, J. Elston, B. Argrow, A. Houston, E. Rasmussen, Sampling severe local storms and related phenomena: using unmanned aircraft systems. Robot. Autom. Mag. 19(1), 85–95 (2012)

    Article  Google Scholar 

  • GRLevel3, grlevel3 (2010), http://www.grlevelx.com/grlevel3/

  • Gumstix, The gumstix website (2012), http://www.gumstix.com

  • J. Halverson, P.L. Azofeifa, M. Black, S. Braun, D. Cecil, M. Goodman, A. Heymsfield, G. Heymsfield, R. Hood, T. Krishnamurti, G. McFarquhar, J. Molinari, R. Rogers, J. Turk, C. Velden, D.-L. Zhang, E. Zipser, R. Kakar, Nasa ' s tropical cloud systems and processes (tcsp) experiment: investigating tropical cyclogenesis and hurricane intensity change. NASA TCSP News (2005). http://tcsp.nsstc.nasa.gov/news.html

  • D. Henkel, C. Dixon, J. Elston, T.X. Brown, A reliable sensor data collection network using unmanned aircraft, in Proceedings of the Second International Workshop on Multi-hop Ad Hoc Networks: from theory to reality (REALMAN) (ACM, New York, 2006)

    Google Scholar 

  • S. Hipskind, G. Tyrell, G. Holland, J. Curry, Use of the aerosonde uninhabited aerial vehicle (UAV) in the fourth convection and moisture experiment (CAMEX 4), in AIAA ' s 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth (AIAA, Reston, 2002)

    Google Scholar 

  • T.F. Hock, J.L. Franklin, The ncar gps dropwindsonde. Bull. Am. Meteorol. Soc. 80(3), 407–420 (1999). ISSN 0003–0007

    Article  Google Scholar 

  • A. Houston, B. Argrow, J. Elston, J. Lahowetz, P. Kennedy, The collaborative colorado-nebraska unmanned aircraft system experiment. Bull. Am. Meteorol. Soc. 93, 39–54 (2011) (In Submission)

    Article  Google Scholar 

  • J. How, E. King, Y. Kuwata, Flight demonstrations of cooperative control for uav teams, in Proceedings of the AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, Chicago (AIAA, Reston, 2004)

    Google Scholar 

  • D.B. Johnson, D.A. Maltz, J. Broch, Dsr: the dynamic source routing protocol for multi-hop wireless ad hoc networks, in In Ad Hoc Networking, ed. by C.E. Perkins (Addison-Wesley, Boston, 2001) pp. 139–172. Chapter 5

    Google Scholar 

  • E. Kohler, R. Morris, B. Chen, J. Jannotti, M. Frans Kaashoek, The click modular router. ACM Trans. Comput. Syst. 18, 263–297 (2000). ISSN 0734–2071

    Article  Google Scholar 

  • N.E. Leonard, D.A. Paley, R.E. Davis, D.M. Fratantoni, F. Lekien, F. Zhang, Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in monterey bay. J. Field Robot. 27(6), 718–740 (2010)

    Article  Google Scholar 

  • P.-H. Lin, C.-S. Lee, The eyewall-penetration reconnaissance observation of typhoon longwang (2005) with unmanned aerial vehicle, aerosonde. J. Atmos. Ocean. Technol. 25(1), 15–25 (2008)

    Article  Google Scholar 

  • J. Love, J. Jariyasunant, E. Pereira, M. Zennaro, K. Hedrick, C. Kirsch, R. Sengupta, Csl: a language to specify and re-specify mobile sensor network behaviors. (IEEE RTSS), 1 (2009)

    Google Scholar 

  • Office of the Secretary of Defense, FY2009–2034 Unmanned Systems Integrated Roadmap (Department of Defense, Washington, DC, 2009)

    Google Scholar 

  • Performance Analysis of Telecommunication Systems (PATS) research group, An implementation of aodv in click (2012), http://www.pats.ua.ac.be/software/aodv

  • E. Rasmussen, Situational awareness for severe storms intercept (2010), http://www.rasmsys.com/Software/page8/page8.html

  • M. Stachura, E.W. Frew, Cooperative target localization with a communication aware unmanned aircraft system. AIAA J. Guid. Control Dyn. 34(5), 1352–1362 (2011)

    Article  Google Scholar 

  • J.M. Straka, E.N. Rasmussen, S.E. Fredrickson, A mobile mesonet for finescale meteorological observations. J. Atmos. Ocean. Technol. 13(5), 921–936 (1996). ISSN 0739–0572. doi:10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2

    Article  Google Scholar 

  • Tempest, The recuv tempest ua website (2010), http://recuv.colorado.edu/tempest

  • J. Tisdale, Z. Kim, J. Hedrick, Autonomous uav path planning and estimation. IEEE Robot. Autom. Mag. 16(2), 35–42 (2009). ISSN 1070–9932. doi:10.1109/MRA.2009.932529

    Article  Google Scholar 

  • J. Zheng, M.J. Lee, A comprehensive performance study of IEEE 802.15.4, in Sensor Network Operations (IEEE, Piscataway, 2006), pp. 218–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Elston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Elston, J., Stachura, M., Dixon, C., Argrow, B., Frew, E.W. (2015). Layered Approach to Networked Command and Control of Complex UAS. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_33

Download citation

Publish with us

Policies and ethics