Source-Sink Dynamics of Wetlands

  • Tracy A. G. Rittenhouse
  • William E. Peterman
Reference work entry


Source-sink dynamics stem from metapopulation theory, where sources are populations with births exceeding deaths and emigration exceeding immigration, and sinks are populations with deaths exceeding births. Sink populations are sustained by immigration from nearby source populations, and thus functional connectivity among wetlands is key to maintaining source-sink dynamics among wetlands. The wood frog is an example pond-breeding amphibian where source-sink dynamics among wetlands is critical to regional population persistence. We summarize how source-sink dynamics can be inferred from demographics, genetics, and network models. Challenges that remain include identifying source and sink wetlands within natural systems, as well as, incorporating source-sink dynamics into wetland mitigation.


Connectivity Genetics Network models Metapopulations Mitigation wetlands 


  1. Berven KA. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology. 1990;71:1599–608.CrossRefGoogle Scholar
  2. Berven KA, Grudzien TA. Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evolution. 1990;44:2047–56.PubMedCentralPubMedGoogle Scholar
  3. Charney ND. Evaluating expert opinion and spatial scale in an amphibian model. Ecol Model. 2012;242:37–45.CrossRefGoogle Scholar
  4. Compton BW, McGarigal K, Cushman SA, Gamble LR. A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol. 2007;21:788–99.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Gamble LR, McGarigal K, Jenkins CL, Timm BC. Limitations of regulated “buffer zones” for the conservation of marbled salamanders. Wetlands. 2006;26:298–306.CrossRefGoogle Scholar
  6. Gamble LR, McGarigal K, Compton BW. Fidelity and dispersal in the pond-breeding amphibian, Ambystoma opacum: implications for spatio-temporal population dynamics and conservation. Biol Conserv. 2007;139:247–57.CrossRefGoogle Scholar
  7. Hanski I, Ovaskainen O. The metapopulation capacity of a fragmented landscape. Nature. 2000;404:755–8.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Keagy JC, Schreiber SJ, Cristol DA. Replacing sources with sinks: when do populations go down the drain? Restor Ecol. 2005;13:529–35.CrossRefGoogle Scholar
  9. Manier MK, Arnold SJ. Population genetic analysis identifies source-sink dynamics for two sympatric garter snake species (Thamnophis elegans and Thamnophis sirtalis). Mol Ecol. 2005;14:3965–76.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Marsh DM, Trenham PC. Metapopulation dynamics and amphibian conservation. Conserv Biol. 2001;15:40–9.CrossRefGoogle Scholar
  11. Martínez-Solano I, González EG. Patterns of gene flow and source-sink dynamics in high altitude populations of the common toad Bufo bufo (Anura: Bufonidae). Biol J Linn Soc. 2008;95:824–39.CrossRefGoogle Scholar
  12. McRae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology. 2008;89:2712–24.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Murphy MA, Dezzani R, Pilliod DS, Storfer A. Landscape genetics of high mountain frog metapopulations. Mol Ecol. 2010;19:3634–49.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Pearse D, Crandall K. Beyond FST: analysis of population genetic data for conservation. Conserv Genet. 2004;5:585–602.CrossRefGoogle Scholar
  15. Peery MZ, Beissinger SR, House RF, Bérubé M, Hall LA, Sellas A, Palsbøll PJ. Characterizing source sink dynamics with genetic parentage assignments. Ecology. 2008;89:2746–59.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Peterman WE, Rittenhouse TAG, Earl JE, Semlitsch RD. Demographic network and multi-season occupancy modeling of Rana sylvatica reveal spatial and temporal patterns of population connectivity and persistence. Landsc Ecol. 2013;28:1601–13.CrossRefGoogle Scholar
  17. Petranka JW, Holbrook CT. Wetland restoration for amphibians: should local sites be designed to support metapopulations or patchy populations? Restor Ecol. 2006;14:404–11.CrossRefGoogle Scholar
  18. Petranka JW, Smith CK, Scott AF. Identifying the minimal demographic unit for monitoring pond-breeding amphibians. Ecol Appl. 2004;14:1065–78.CrossRefGoogle Scholar
  19. Petranka JW, Harp EM, Holbrook CT, Hamel JA. Long-term persistence of amphibian populations in a restored wetland complex. Biol Conserv. 2007;138:371–80.CrossRefGoogle Scholar
  20. Pope SE, Fahrig L, Merriam G. Landscape complementation and metapopulation effects on leopard frog populations. Ecology. 2000;81:2498–508.CrossRefGoogle Scholar
  21. Pulliam HR. Sources, sinks and population regulation. Am Nat. 1988;132:652–61.CrossRefGoogle Scholar
  22. Richter-Boix A, Llorente GA, Montori A. Hierarchical competition in pond-breeding anuran larvae in a Mediterranean area. Amphibia-Reptilia. 2007;28:247–61.CrossRefGoogle Scholar
  23. Rittenhouse TAG, Semlitsch RD. Distribution of amphibians in terrestrial habitat surrounding wetlands. Wetlands. 2007;27:153–61.CrossRefGoogle Scholar
  24. Rittenhouse TAG, Semlitsch RD, Thompson III FR. Survival costs associated with wood frog breeding migrations: effects of timber harvest and drought. Ecology. 2009;90:1620–30.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Schick RS, Lindley ST. Directed connectivity among fish populations in a riverine network. J Appl Ecol. 2007;44:1116–26.CrossRefGoogle Scholar
  26. Semlitsch RD. Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conserv Biol. 1998;12:1113–9.CrossRefGoogle Scholar
  27. Semlitsch RD. Principles for management of aquatic-breeding amphibians. J Wildl Manag. 2000;64:615–31.CrossRefGoogle Scholar
  28. Semlitsch RD. Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag. 2008a;72:260–7.CrossRefGoogle Scholar
  29. Semlitsch RD. Moving wetland mitigation towards conservation banking. Natl Wetl Newsl. 2008b;30:15–6.Google Scholar
  30. Semlitsch RD, Bodie JR. Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol. 2003;17:1219–28.CrossRefGoogle Scholar
  31. Shulse CD, Semlitsch RD, Trauth KM, Williams AD. Influences of design and landscape placement parameters on amphibian abundance in constructed wetlands. Wetlands. 2010;30:915–28.CrossRefGoogle Scholar
  32. Shulse CD, Semlitsch RD, Trauth KM, Gardner JE. Testing wetland features to increase amphibian reproductive success and species richness for mitigation and restoration. Ecol Appl. 2012;22:1675–88.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Smith MA, Green DM. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography. 2005;28:110–28.CrossRefGoogle Scholar
  34. Urban DL, Minor ES, Treml EA, Schick RS. Graph models of habitat mosaics. Ecol Lett. 2009;12:260–73.CrossRefPubMedCentralPubMedGoogle Scholar
  35. Wang IJ, Savage WK, Shaffer HB. Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol. 2009;18:1365–74.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Wasserman T, Cushman S, Schwartz M, Wallin D. Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol. 2010;25:1601–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Natural Resources and the EnvironmentUniversity of ConnecticutStorrsUSA
  2. 2.School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA

Personalised recommendations