Symbioses: Assisting Plant Success in Aquatic Settings

  • Kevin J. Stevens
  • Bishnu R. Twanabasu
  • Demetra Kandalepas
Reference work entry

Abstract

Plants form associations with fungi in leaves, stems, and roots. Mycorrhizas develop in roots. Generally, plants benefit through increased nutrition in exchange for carbohydrates. Mycorrhizas are associated with increased tolerance to environmental stressors and competitive ability. While water quality and quantity affect mycorrhizas, several types are found in wetlands. Arbuscular mycorrhizas are the most widespread, being characterized by internal branched structures (arbuscules). Dark septate endophytes are a poorly studied but wide-ranging group that are seen as darkly colored hyphae on and within roots. Ectomycorrhizas are associated with tree species and while present in wetlands, their function is unclear. Orchids and ericaceous plants form mycorrhrizas called orchid and ericoid mycorrhizas; their functions in wetland plants are also poorly studied. Fungi living in shoot tissues (shoot endophytes) are ubiquitous being found in terrestrial and wetland environments. While altered hydrology can affect wetland endophyte ecology, the impacts on vegetation are currently unknown.

Keywords

Symbiosis Mycorrhiza Shoot endophytes Fungi Roots Translocation Macronutrients 

References

  1. Ahlholm J, Helander M, Henriksson M, Metzler M, Saikkonen K. Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution. 2002;56:1566–73.CrossRefGoogle Scholar
  2. Arechavaleta M, Bacon CW, Plattner RD, Hoveland CS, Radcliffe DE. Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Appl Environ Microbiol. 1992;58:857.PubMedPubMedCentralGoogle Scholar
  3. Arnold A, Herre E. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia. 2003;95:388–98.CrossRefGoogle Scholar
  4. Arnold A, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology. 2007;88:541–9.CrossRefGoogle Scholar
  5. Arnold A, Maynard Z, Gilbert G, Coley P, Kursar T. Are tropical fungal endophytes hyperdiverse? Ecol Lett. 2000;3:267–74.CrossRefGoogle Scholar
  6. Bacon C. Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ. 1993;44:123–41.CrossRefGoogle Scholar
  7. Belesky DP, Malinowski DP. Abiotic stresses and morphological plasticity and chemical adaptations of Neotyphodium-infected tall fescue plants. In: Bacon CW, White Jr JF, editors. Microbial endophytes. New York: Marcel Dekker, Inc.; 2000.Google Scholar
  8. Blodgett J, Swart W, Louw S, Weeks W. Soil amendments and watering influence the incidence of endophytic fungi in Amaranthus hybridus in South Africa. Appl Soil Ecol. 2007;35:311–8.CrossRefGoogle Scholar
  9. Bohrer KE, Friese CF, Amon JP. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza. 2004;14:329–37.CrossRefGoogle Scholar
  10. Bradley R, Burt AJ, Read DJ. The biology of mycorrhiza in the Ericaceae VII. The role of the mycorrhizal infection in heavy metal resistance. New Phytol. 1982;91:197–209.CrossRefGoogle Scholar
  11. Carvalho LM, Correia PM, Cacador I, MA M-L. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils. 2003;38:137–43.CrossRefGoogle Scholar
  12. Clay K. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology. 1988;69:10–6.CrossRefGoogle Scholar
  13. Clay K, Marks S, Cheplick GP. Effects of insect herbivory and fungal endopyte infection on competitive interactions among grasses. Ecology. 1993;74:358–62.CrossRefGoogle Scholar
  14. Colbentz KE, Van Bael SA. Field colonies of leaf-cutting ants select plant materials containing low abundances of endophytic fungi. Ecosphere. 2013;4:1–10.Google Scholar
  15. Cowden CC, Shefferson RP. Diversity of root-associated fungi of mature Habenaria radiata and Epipactis thunbergii colonizing manmade wetlands in Hiroshima Prefecture, Japan. Mycoscience. 2013;54:327–34.CrossRefGoogle Scholar
  16. Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA, Streever BJ, Twilley RR, Watson CC, Wells JT, Whigham DF. Restoration of the Mississippi Delta: lessons from Hurricanes Katrina and Rita. Science. 2007;315:1679–84.CrossRefGoogle Scholar
  17. Denny HJ, Ridge I. Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants. New Phytol. 1995;130:251–7.CrossRefGoogle Scholar
  18. Elamo P, Helander M, Saloniemi I, Neuvonen S. Birch family and environmental conditions affect endophytic fungi in leaves. Oecologia. 1999;118:151–6.CrossRefGoogle Scholar
  19. Eschen R, Hunt S, Mykura C, Gange AC, Sutton BC. The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content. Fungal Biol. 2010;114:991–8.CrossRefGoogle Scholar
  20. Fail GL, Langenheim JH. Infection process of Pestalotia subcuticularis on leaves of Hymenaea courbaril. Phytopathology. 1990;80:1259–65.CrossRefGoogle Scholar
  21. Gange A, Dey A, Currie A, Sutton B. Site- and species-specific differences in endophyte occurrence in two herbaceous plants. J Ecol. 2007;95:614–22.CrossRefGoogle Scholar
  22. Garriock ML, Peterson RL, Ackerley CA. Early stages in colonization of Allium porrum (leek) by the vesicular-arbuscular mycorrhizal fungus, Glomus versiforme. New Phytol. 1989;112:85–92.CrossRefGoogle Scholar
  23. Haselwandter K, Read DJ. The significance of a root-fungus association in two Carex species of high-alpine communities. Oecologia (Berl). 1982;53:352–4.CrossRefGoogle Scholar
  24. Hashizume Y, Fukuda K, Sahashi N. Effects of summer temperature on fungal endophyte assemblages in Japanese beech (Fagus crenata) leaves in pure beech stands. Botany. 2010;88:266–74.CrossRefGoogle Scholar
  25. Hashizume Y, Sahashi N, Fukuda K. The influence of altitude on endophytic mycobiota in Quercus acuta leaves collected in two areas 1000 km apart. For Pathol. 2008;38:218–26.CrossRefGoogle Scholar
  26. Helander M, Neuvonen S, Sieber TN, Petrini O. Simulated acid rain affects birch leaf endophyte populations. Microb Ecol. 1993;26:227–34.CrossRefGoogle Scholar
  27. Hoffman M, Arnold A. Geographic locality and host identity shape fungal endophyte communities in Cupressaceous trees. Mycol Res. 2008;112:331–44.CrossRefGoogle Scholar
  28. Illyés Z, Halász K, Rudnóy S, Ouanphanivanh N, Garay T, Bratek A. Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. J Appl Bot Food Qual. 2009;83:28–36.Google Scholar
  29. Johnson NC, Graham JH. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil. 2013;363:411–9.CrossRefGoogle Scholar
  30. Jumpponen A, Trappe JM. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 1998;140:295–310.CrossRefGoogle Scholar
  31. Kai W, Zhao ZW. Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. Int Rev Hydrobiol. 2006;91:29–37.CrossRefGoogle Scholar
  32. Kandalepas D. 2012. Effects of coastal dynamics on colonization of Louisiana wetland plants by fungal endophytes. Louisiana State University, dissertation 208pp.Google Scholar
  33. Kandalepas D, Stevens KJ, Platt WJ. Root endophytes are abundant in a degrading Louisiana marsh – an assessment of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Wetlands. 2010;30:189–99.CrossRefGoogle Scholar
  34. Klymiuk AA, Taylor TN, Taylor EL, Krings M. Paleomycology of the Princeton Chert II. Dark septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene. Mycologia. 2013;2013:13–25.Google Scholar
  35. Kohout P, Sýkorová Z, Čtvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R. Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol. 2012;80:216–35.CrossRefGoogle Scholar
  36. Kumaresan V, Suryanarayanan T. Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res. 2001;105:1388–91.CrossRefGoogle Scholar
  37. Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza. 1997;7:139–53.CrossRefGoogle Scholar
  38. Malinowski D, Leuchtmann A, Schmidt D, Nösberger J. Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agron J. 1997;89:673–8.CrossRefGoogle Scholar
  39. Marks S, Clay K. Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol. 1996;133:727–33.CrossRefGoogle Scholar
  40. Newsham KK. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol. 1999;144:517–24.CrossRefGoogle Scholar
  41. Perotto S, Peretto R, Faccio A, Schubert A, Varma A, Bonfante P. Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot. 1995;73:S557–68.CrossRefGoogle Scholar
  42. Peterson RL, Farquhar ML. Mycorrhizas – integrated development between roots and fungi. Mycologia. 1994;86:311–26.CrossRefGoogle Scholar
  43. Peterson RL, Massicotte HB, Melville LH. Mycorrhizas: anatomy and cell biology. Ottawa: NRC Research Press; 2004.Google Scholar
  44. Peterson RL, Uetake Y, Zelmer C. Fungal symbiosis with orchid protocorms. Symbiosis. 1998;25:29–55.Google Scholar
  45. Peterson RL, Wagg C, Pautler M. Associations between mycorrhizal endophytes and roots: do structural features indicate function? Botany. 2008;86:445–56.CrossRefGoogle Scholar
  46. Pianka ER. Latitudinal gradients in species diversity: a review of concepts. Am Nat. 1966;100:33–46.CrossRefGoogle Scholar
  47. Rains KC, Nadkarni NM, Bledsoe CS. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza. 2003;13:257–64.CrossRefGoogle Scholar
  48. Read DJ. The structure and function of the ericoid mycorrhizal root. Ann Bot. 1996;77:365–74.CrossRefGoogle Scholar
  49. Read DJ, Haselwandter K. Observations on the mycorrhizal status of some alpine plant communities. New Phytol. 1981;88:341–52.CrossRefGoogle Scholar
  50. Redman R, Dunigan D, Rodriguez R. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol. 2001;151:705–16.CrossRefGoogle Scholar
  51. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez R. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One. 2011;6:e14823.CrossRefGoogle Scholar
  52. Rillig MC. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci. 2004;84:355–63.CrossRefGoogle Scholar
  53. Robertson SJ, Tackaberry LE, Egger KN, Massicotte HB. Ectomycorrhizal fungal communities of black spruce differ between wetland and upland forests. Can J For Res. 2006;36:972–85.CrossRefGoogle Scholar
  54. Saikkonen K, Faeth S, Helander M, Sullivan T. Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst. 1998;29:319–43.CrossRefGoogle Scholar
  55. Schüßler A, Schwarzotti D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res. 2001;105:1413–21.CrossRefGoogle Scholar
  56. Slankis V. Soil factors influencing formation of Mycorrhizae. Annu Rev Phytopathol. 1974;12:437–57.CrossRefGoogle Scholar
  57. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. New York: Academic; 2008.Google Scholar
  58. Solaiman MZ, Hirata H. Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil. 1997;191:1–12.CrossRefGoogle Scholar
  59. Stevens KJ, Peterson R. The effect of a water gradient on the vesicular-arbuscular mycorrhizal status of Lythrum salicaria L. (purple loosestrife). Mycorrhiza. 1996;6:99–104.CrossRefGoogle Scholar
  60. Stevens KJ, Spender SW, Peterson RL. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Mycorrhiza. 2002;12:277–83.CrossRefGoogle Scholar
  61. Stevens KJ, Wall CB, Janssen JA. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza. 2011;21:279–88.CrossRefGoogle Scholar
  62. Stevens KJ, Wellner MR, Acevedo M. Dark septate endophyte and arbuscular mycorrhizal status of herbaceous vegetation recolonizing a remnant bottomland hardwood forest in east Texas. Aquat Bot. 2009;92:105–11.CrossRefGoogle Scholar
  63. Stewart SL, Zettler LW. Symbiotic germination of three semiaquatic rein orchids (Habenaria repens, H. quinqueseta, H. macroceratitis) from Florida. Aquat Bot. 2002;72:25–35.CrossRefGoogle Scholar
  64. Taylor TN, Remy W, Hass H, Kerp H. Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia. 1995;87:560–73.CrossRefGoogle Scholar
  65. Thormann MN, Currah RS, Bayley SE. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands. 1999;19:438–50.CrossRefGoogle Scholar
  66. Twanabasu B, Stevens KJ, Venables B, Sears W. The effects of triclosan on arbuscular mycorrhizal spore germination, hyphal growth, and hyphal branching in Glomus intraradices. Sci Total Environ. 2013a;454–455:51–60.CrossRefGoogle Scholar
  67. Twanabasu B, Smith C, Stevens KJ, Venables B, Sears W. Triclosan inhibits arbuscular mycorrhizal colonization in three wetland plants. Sci Total Environ. 2013b;447:450–7.CrossRefGoogle Scholar
  68. Valkama E, Koricheva J, Salminen J, Helander M, Saloniemi I, Saikkonen K, Pihlaja K. Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi? Trees Struct Funct. 2005;19:191–7.CrossRefGoogle Scholar
  69. Van Bael SA, Seid MA, Wcislo WT. Endophytic fungi increase the processing rate of leaves by leaf-cutting ants (Atta). Ecol Entomol. 2012;37:318–21.CrossRefGoogle Scholar
  70. Vasilas B, Vasilas L, Thompson J, Rizzo A, Furhmann J, Evans T, Pesek J, Kunkle K. Ectomycorrhizal mantles as indicators of hydrology for jurisdictional wetland determinations. Wetlands. 2004;24:784–95.CrossRefGoogle Scholar
  71. Weishampel PA, Bedford BL. Wetland dicots and monocots differ in colonization by arbuscular mycorrhzal fungi and dark septate endophytes. 2006. Mycorrhiza. 2006;16:495–502.CrossRefGoogle Scholar
  72. Wetzel PR, van der Valk AG. Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Can J Bot. 1996;74:883–90.CrossRefGoogle Scholar
  73. White JA, Charvat I. The mycorrhizal status of an emergent aquatic, Lythrum salicaria L., at different levels of phosphorus availability. Mycorrhiza. 1999;9:191–7.CrossRefGoogle Scholar
  74. Wilson BJ, Addy HD, Tsuneda A, Hambleton S, Currah RS. Phialocephala sphaeroides sp. nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot. 2004;82:607–17.CrossRefGoogle Scholar
  75. Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1998;198:97–107.CrossRefGoogle Scholar
  76. Yu T, Nassuth A, Peterson RL. Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol. 2001;47:741–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kevin J. Stevens
    • 1
  • Bishnu R. Twanabasu
    • 2
  • Demetra Kandalepas
    • 3
  1. 1.Department of BiologyWilfrid Laurier UniversityWaterlooCanada
  2. 2.Weatherford CollegeWeatherfordUSA
  3. 3.Department of Ecology and Evolutionary Biology, Tulane UniversityNew OrleansUSA

Personalised recommendations