Skip to main content

Environmental Flows: Habitat Modeling

  • Reference work entry
  • First Online:
The Wetland Book

Abstract

Aquatic habitat modelling is commonly used in riverine wetlands for environmen.tal flow assessments as a means of defining the empirical relationship between environmental variables, and usable habitat for selected target species, life stages or aquatic communities. Aquatic habitat modelling is used to determine environmental flow strategies by estimating the effects of historic, current or future flow scenarios on habitat availability. The origins of aquatic habitat modelling for determining environmental flows can be traced to the development of the Instream Flow Incremental Methodology (IFIM) and the set of computer programs required to implement an IFIM study, i.e. the Physical Habitat Simulation (PHABSIM) system. More recently, other models have used alternative approaches, such as CASiMiR (Computer Aided Simulation Model for Instream Flow and Riparia) that utilises a mix of expert opinion and fuzzy logic based rules to describe the habitat use of target species or the application of multidimensional, i.e., two-dimensional and to a lesser extent three-dimensional hydraulic-habitat models. These enable an enhanced representation of the hydraulic environment and allow the calculation and modelling of turbulent flow properties. However, a knowledge of how biota respond to and are influenced by these properties remains an ongoing challenge to incorporate them into environmental flow setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beesley L, King AJ, Gawne B, Koehn JD, Price A, Nielsen D, Amtstaetter F, Meredith SN. Optimising environmental watering of floodplain wetlands for fish. Freshw Biol. 2014;59(10):2024–37. https://doi.org/10.1111/fwb.12404.

    Article  Google Scholar 

  • Bovee KD. A guide to stream habitat analysis using the IFIM – report FWS/OBS-82/26. Fort Collins: US Fish and Wildlife Service; 1982.

    Google Scholar 

  • Costa RMS, Martínez-Capel F, Muñoz-Mas R, Alcaraz-Hernández JD, Garófano-Gómez V. Habitat suitability modelling at mesohabitat scale and effects of dam operation on the endangered Júcar Nase, Parachondrostoma Arrigonis (River Cabriel, Spain). River Res Appl. 2012;28:740–52.

    Article  Google Scholar 

  • Dunbar MJ, Alfredsen K, Harby A. Hydraulic-habitat modelling for setting environmental flow needs for salmonids. Fish Manag Ecol. 2012;19:500–17.

    Article  Google Scholar 

  • Gippel CJ, Stewardson MJ. Use of wetted perimeter in defining minimum environmental flows. Regul Rivers Res Manag. 1998;14:53–67.

    Article  Google Scholar 

  • Heggenes J. Habitat selection by Brown Trout (Salmo trutta) and young Atlantic Salmon (Salmo salar) in streams: static and dynamic modelling. Regul Rivers Res Manag. 1996;12:155–69.

    Article  Google Scholar 

  • Janauer GA, Schmidt-Mumm U, Reckendorfer W. Ecohydraulics and aquatic macrophytes: assessing the relationships in river floodplains. In: Maddock I, Harby A, Kemp P, Wood P, editors. Ecohydraulics: an integrated approach. New York: Wiley; 2013. p. 245–59.

    Chapter  Google Scholar 

  • Jowett Consulting. RYHABSIM. 2011. http://www.jowettconsulting.co.nz/home/rhyhabsim. Accessed 23 June 2014.

  • Maddock IP, Bickerton MA, Spence R, Pickering T. Reallocation of compensation releases to restore river flows and improve instream habitat availability in the Upper Derwent catchment, Derbyshire, UK. Regul Rivers Res Manag. 2001;17:417–41.

    Article  Google Scholar 

  • Maynard CM, Lane SN. Reservoir compensation releases: impact on the macroinvertebrate community of the Derwent River, Northumberland, UK – a longitudinal study. River Res Appl. 2012;28:692–702.

    Article  Google Scholar 

  • Mouton A, de Baets B, Goethals P. Data-driven fuzzy habitat models: impact of performance criteria and opportunities for ecohydraulics. In: Maddock I, Harby A, Kemp P, Wood P, editors. Ecohydraulics: an integrated approach. New York: Wiley; 2013. p. 93–107.

    Chapter  Google Scholar 

  • Nestler J, Milhous RT, Layzer JB. Instream habitat modelling techniques. In: Gore JA, Petts GE, editors. Alternatives in regulated river management. Boca Raton: CRC Press; 1989. p. 295–316.

    Google Scholar 

  • Noack M, Schneider M, Wieprecht S. The habitat modelling system CASiMiR: a multivariate fuzzy approach and its applications. In: Maddock I, Harby A, Kemp P, Wood P, editors. Ecohydraulics: an integrated approach. New York: Wiley; 2013. p. 75–91.

    Chapter  Google Scholar 

  • Olsen M, Boegh E, Pedersen S, Pedersen MF. Impact of groundwater abstraction on physical habitat of brown trout (Salmo trutta) in a small Danish stream. Hydrol Res. 2009;40:394–405.

    Article  Google Scholar 

  • Ormerod SJ, Durance I. Understanding and managing climate change effects on river ecosystems. In: Boon PJ, Raven PJ, editors. River conservation and management. New York: Wiley-Blackwell; 2012. p. 107–19.

    Chapter  Google Scholar 

  • Rodriguez JF, Howe A. Estuarine wetland ecohydraulics and migratory shorebird habitat restoration. In: Maddock I, Harby A, Kemp P, Wood P, editors. Ecohydraulics: an integrated approach. New York: Wiley; 2013. p. 375–94.

    Chapter  Google Scholar 

  • Thomas R. Payne and Associates. RHABSIM version 3.0. http://trpafishbiologists.com/rindex.html. 2013. Accessed 23 June 2014.

  • Waters BF. A methodology for evaluating the effects of different stream flows on salmonid habitat. In: Orsborn JF, Allman CH, editors. Instream flow needs. Bethesda: American Fisheries Society; 1976. p. 254–66.

    Google Scholar 

  • Wilkes MA, Maddock I, Visser F, Acreman MC. Incorporating hydrodynamics into ecohydraulics: the role of turbulence in the swimming performance and habitat selection of steam-dwelling fish. In: Maddock I, Harby A, Kemp P, Wood P, editors. Ecohydraulics: an integrated approach. New York: Wiley; 2013. p. 9–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Maddock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maddock, I. (2018). Environmental Flows: Habitat Modeling. In: Finlayson, C.M., et al. The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9659-3_345

Download citation

Publish with us

Policies and ethics