Skip to main content

Earth Observation Methods for Wetlands: Overview

  • Reference work entry
  • First Online:
  • 90 Accesses

Abstract

Across their range, wetlands are highly complex and dynamic and have been observed by a wide and diverse range of ground, airborne, and spaceborne sensors. The methods applied for characterizing, mapping, and monitoring mangroves are therefore diverse but have focused primarily on mapping state (i.e., water, ice, or snow) and extent as well as persistence and duration, sediment loads, substrate characteristics, and tidal fluctuations. A number of indices, algorithms, and models have been specifically developed to understand the changing states of wetlands, with these including mangroves, sea grasses, bogs, mires and fens, tropical floodplains, and semiarid wetlands. Many wetlands are also subject to anthropogenic disturbance as well as natural events and processes. Remote sensing data provide a unique opportunity to track such changes but also to classify these according to the different disturbance types. A number of international programs have also been put in place to advance the use of remote sensing data for wetland observations, with these including the European Space Agency’s (ESA) Globwetland (I, II), the Japan Aerospace Exploration Agency (JAXA’s) Kyoto and Carbon (K&C) Initiative, and the NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) projects.

This is a preview of subscription content, log in via an institution.

References

  • Alsdorf DE, Rodriguez E, Lettenmaier DP. Measuring surface water from space. Rev Geophys. 2007;45(2):RG2002.

    Google Scholar 

  • Bartsch A, Wagner W, Scipal K, Pathe C, Sabel D, Wolski P. Global monitoring of wetlands – the value of ENVISAT ASAR global mode. J Environ Manage. 2009;90:2226–33.

    CAS  PubMed  Google Scholar 

  • Cook BD, Bolstad PV, Naesset E, Anderson RS, Garrigues S, Morisette JT, Nikeson J, Davis KJ. Using lidar and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalisations. Remote Sens Environ. 2009;113:2366–79.

    Google Scholar 

  • Costa MPF, Telmer KH. Utilizing SAR imagery and aquatic vegetation to map fresh and brackish lakes in the Brazilian Pantanal wetland. Remote Sens Environ. 2006;105:204–13.

    Google Scholar 

  • Dekker AG, Brando VE, Anstee JM. Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ. 2005;97:415–33.

    Google Scholar 

  • Di Gregorio A, Jansen LJM. Land cover classification system (LCCS): classification concepts and user manual for software version 1.0. Rome: Food and Agricultural Organisation (FAO); 2000.

    Google Scholar 

  • Dillabaugh KA, King DJ. Riparian marshland composition and biomass mapping using IKONOS imagery. Can J Remote Sens. 2008;34(2):143–58.

    Google Scholar 

  • Dozier J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens Environ. 1989;28:9–22.

    Google Scholar 

  • Giri G, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. Status and distribution of Mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr. 2011;20(1):154–9.

    Google Scholar 

  • Hess LL, Melack JM, Filoso S, Yong W. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens. 1995;33:896–904.

    Google Scholar 

  • Hess LL, Melack JM, Novo EMLM, Barbosa C, Gastil M. Dual–season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ. 2003;87:404–28.

    Google Scholar 

  • Hoekman DH. Satellite radar observation of tropical peat swamp forest as a tool for hydrological modeling and environmental protection. Aquat Conserv Mar Freshw Ecosyst. 2007;17:265–75.

    Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen J, Martikainen P, Vasander H. Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol. 2005;11:1788–97.

    Google Scholar 

  • Jensen AM, Hardy T, McKee M, Yang QC. Using a multispectral autonomous unmanned aerial remote sensing platform (AggieAir) for riparian and wetlands application. Geoscience and Remote Sensing Symposium (IGARSS); 2011. p. 2413–3416.

    Google Scholar 

  • Jones K, Lanthier Y, van der Voet P, van Valkengoed E, Taylor D, Fernandez-Prieto D. Monitoring and assessment of wetlands using earth observation: the GlobWetland project. J Environ Manage. 2009;90:2154–69.

    PubMed  Google Scholar 

  • Laba M, Downs R, Smith S, Welsh S, Neider C, White S, Richmond M, Philpot W, Baveye P. Mapping invasive wetland plans in the Hudson River National Estuary Research Reserve using Quickbird satellite imagery. Remote Sens Environ. 2008;112:286–300.

    Google Scholar 

  • Liu K, Li X, Shi X, Wang S. Monitoring mangrove forest changes using remote sensing and GIS data with decision tree learning. Wetlands. 2008;28:336–46.

    CAS  Google Scholar 

  • Lucas RM, Mitchell A, Donnelly B, Milne AK, Ellison J, Finlaysson M. Use of stereo aerial photography for assessing changes in the extent and height of mangrove canopies in tropical Australia. Wetl Ecol Manag. 2002;10:161–75.

    Google Scholar 

  • Lucas RM, Blonda P, Bunting P, Jones G, Inglada J, Aria M, Kosmidou V, Petrou ZI, Manakos I, Adamo M, Charnock R, Tarantino C, Mücher CA, Jongman R, Kramer H, Arvor D, Honrado JP, Mairota P. The earth observation data for habitat monitoring (EODHAM) system. Int J Appl Earth Obs Geoinf. 2014a:17–28.

    Google Scholar 

  • Lucas RM, Rebelo L, Fatoyinbo L, Rosenqvist A, Itoh T, Shimada M, Simard M, Souza-Filho PW, Thomas N, Trettin C, Accad A, Carreiras J, Hilarides L. Contribution of L-band SAR to systematic global mangrove monitoring. Freshw Mar Sci. 2014b;65:589–603.

    Google Scholar 

  • Magumba D, Maruyama A, Kato A, Takagaki M, Kikuchi M. Spatio-temporal changes in wetlands and identification of Cyperus papyrus on the northern shore of Lake Victoria. Trop Agric Dev. 2014;58:1–7.

    Google Scholar 

  • Markham BL, Helder DL. Forty-year calibrated record of earth-reflected radiance from Landsat: a review. Remote Sens Environ. 2012;122:30–40.

    Google Scholar 

  • Mayaux P, De Grandi GF, Rauste Y, Simard M, Saatchi S. Large scale vegetation maps derived from the combined L-band GRFM and C-band CAMP wide area radar mosaics of Central Africa. Int J Remote Sens. 2002;23:1261–82.

    Google Scholar 

  • Melack JM, Hess LL. Remote sensing of the distribution and extent of wetlands in the Amazon Basin. Ecol Stud (Amazonian Floodplain Forests). 2010;210:43–59.

    Google Scholar 

  • Milne AK, Tapley IJ. Mapping and assessment of wetland ecosystems in north-western Tonle Sap Great Lake with AIRSAR data: results of a pilot study funded jointly by the Mekong River Commision and the University of New South Wales; 2004. p. 129.

    Google Scholar 

  • Montefalcone M, Rovere A, Parravicini V, Albertelli G, Morri C, Bianchi CN. Evaluating change in seagrass meadows: a time-framed comparison of side scan sonar maps. Aquat Bot. 2013;104:204–12.

    Google Scholar 

  • Moser L, Voigt S, Schoepfer E, Palmer S. Multi-temporal wetland monitoring in Sub-Saharan West Africa using medium resolution optical satellite data. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;99.

    Google Scholar 

  • Murray NJ, Phinn SR, Clemens SR, Roelfsema CM, Fuller RA. Continental scale mapping of tidal flats across east Asia using the Landsat archive. Remote Sens. 2012;4(11):3417–26.

    Google Scholar 

  • Ozesmi SL, Bauer ME. Satellite remote sensing of wetlands. Wetl Ecol Manag. 2002;10:381–402.

    Google Scholar 

  • Paganini M, Weise K, Fitoka E, Hansen H, Fernandez–Prieto D, Arino O. The DUE Globwetland-2 project. Proceedings of the 2010 Living Planet Symposium, Bergen, Norway; 2010.

    Google Scholar 

  • Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J. Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ. 2008;112:3413–25.

    Google Scholar 

  • Potter C, Melack J, Engle D. Modeling methane emissions from Amazon floodplain ecosystems. Wetlands. 2014;34:501–11.

    Google Scholar 

  • Richey JE, Wilhelm SR, McClain ME, Victoria RL, Melack JM, Araujo-Limo C. Organic matter and nutrient dynamics in river corridors of the Amazon Basin and their response to anthropogenic change. Geophys Res. 1997;97:3787–804.

    Google Scholar 

  • Rosenqvist A. Temporal and spatial characteristics of irrigated rice in JERS-1 L-band SAR data. Int J Remote Sens. 1999;20:1567–87.

    Google Scholar 

  • Rosenqvist A, Shimada M, Milne AK. The ALOS kyoto and carbon initiative. Geosci Remote Sens Symp. 2007;3614–7.

    Google Scholar 

  • Salari A, Zakaria M, Nielson CC, Boyce MS. Quantifying tropical wetlands using field surveys, spatial statistics and remote sensing. Wetlands. 2014;34:565–74.

    Google Scholar 

  • Shaikh M, Green D, Cross H. A remote sensing approach to determine environmental flows for wetlands of the Lower Darling River, New South Wales, Australia. Int J Remote Sens. 2010;22:1737–51.

    Google Scholar 

  • Silva TSF, Costa MPF, Melack JM, Novo EMLM. Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess. 2008;140:131–45.

    PubMed  Google Scholar 

  • Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR. A systematic method for 3d mapping of mangrove forests based on shuttle radar topography mission elevation data, ICESat/GLAS waveforms and field data: application to Cienaga Grande De Santa Marta, Colombia. Remote Sens Environ. 2008;112:2131–44.

    Google Scholar 

  • Spalding M, Kainuma M, Collins L. World atlas of mangroves. 2nd ed. London: Earthscan; 2010. p. 336.

    Google Scholar 

  • Stumpf RP, Goldschmidt PM. Remote sensing of suspended sediment discharge into the Western Gulf of Maine during the April 1987 100-year flood. J Coast Res. 1992;8:218–25.

    Google Scholar 

  • Takeuchi W, Tamura M, Yasuoka Y. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV. Remote Sens Environ. 2003;85(1):21–9.

    Google Scholar 

  • Tehrany MS, Pradhan B, Jebuv MN. A comparative assessment between object- and pixel-based classification approaches for land use/land cover mapping using SPOT-5 imagery. Geocarto Int. 2014;29:351–69.

    Google Scholar 

  • Thomas N, Lucas RM, Itoh T, Simard M, Fatoyinbo L, Bunting P, Rosenqvist A. An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data. Wetl Ecol Manag. 2015;23(1):3–17.

    Google Scholar 

  • Whitcomb J, Moghaddam M, McDonald K, Kellndorfer J, Podest E. Mapping vegetated wetlands of Alaska using L-band radar satellite imagery. Can J Remote Sens. 2014;35:54–72.

    Google Scholar 

  • Williams DL, Goward S, Arvidson T. Landsat: yesterday, today and tomorrow. Photogramm Eng Remote Sens. 2006;72(10):1171–8.

    Google Scholar 

  • Xiao X, Boles S, Liu J, Shuang D, Frolking S, Li C, Salas W, Moore B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ. 2005;95:480–92.

    Google Scholar 

  • Yan Y, Ouyang Z, Guo H, Jin S, Zhao B. Detecting the spatiotemporal changes of tidal flood in the estuarine wetland by using MODIS time series data. J Hydrol. 2010;384(102):156–63.

    Google Scholar 

  • Zhang B, Li J, Shen Q, Chen D. A bio-optical model based method of estimating total suspended matter of Lake Taihu (China) from near infrared remote sensing reflectance. Environ Monit Assess. 2008;145:339–47.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lucas, R. (2018). Earth Observation Methods for Wetlands: Overview. In: Finlayson, C.M., et al. The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9659-3_314

Download citation

Publish with us

Policies and ethics