Advertisement

The Wetland Book pp 1659-1663 | Cite as

Remote Sensing of Wetland Types: Sea Grasses

  • Mitchell Lyons
  • Richard Lucas
Reference work entry

Abstract

Sea grasses are characteristic of coastal waters and play an important role in sustaining biodiversity and also facilitate uptake and storage of carbon. These grasses largely occur in shallow waters that are often clear. Hence, mapping can be achieved using optical remote sensing data with the intricacies of sea grass beds best observed at higher spatial resolutions. Hyperspectral data are especially useful as these can be used to better differentiate sea grass species and productivity types and also facilitate better discrimination from other subsurface environments. Acoustic methods (e.g., SONAR) have also been used and provide additional information on the structure of sea grasses and the underlying topography. Remote sensing data can also be used to indicate human-induced disturbance.

Keywords

Sea grasses Optical remote sensing Hyperspectral data Acoustic methods 

References

  1. Dekker AG, Brando VE, Anstee JM. Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ. 2005;97(4):415–33.CrossRefGoogle Scholar
  2. Dierssen HM, Zimmerman RC, Leathers RA, Downes TV, Davis CO. Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnol Oceanogr. 2003;48:444–55.CrossRefGoogle Scholar
  3. Ferguson RL, Korfmacher K. Remote sensing and GIS analysis of seagrass meadows in North Carolina, USA. Aquat Bot. 1997;58(3):241–58.CrossRefGoogle Scholar
  4. Fyfe SK. Spatial and temporal variation in spectral reflectance: are seagrass species spectrally distinct? Limnol Oceanogr. 2003;48:464–79.CrossRefGoogle Scholar
  5. Green EP, Short FT, editors. World atlas of seagrasses. Berkeley: University of California Press; 2003. p. 298.Google Scholar
  6. Green EP, Mumby PJ, Edwards AJ, Clark CD. A review of remote sensing for the assessment and management of tropical coastal resources. Coast Manag. 1996;24(1):1–40.CrossRefGoogle Scholar
  7. Gullström M, Lundén B, Bodin M, Kangwe J, Öhman MC, Mtolera MS, Björk M. Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar Coast Shelf Sci. 2006;67(3):399–408.CrossRefGoogle Scholar
  8. Komatsu T, Igarashi C, Tatsukawa K, Sultana S, Matsuoka Y, Harada S. Use of multi-beam sonar to map seagrass beds in Otsuchi Bay on the Sanriku Coast of Japan. Aquat Living Resour. 2003;16(3):223–30.CrossRefGoogle Scholar
  9. Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl Optics. 1998;37(27):6329–38.CrossRefGoogle Scholar
  10. Mishra DR, Narumalani S, Rundquist D. Enhancing the detection and classification of coral reef and associated benthic habitats: a hyperspectral remote sensing approach. J Geophys Res Oceans. 2007;112(C8).Google Scholar
  11. Montefalcone M, Rovere A, Parravicini V, Albertelli G, Morri C, Bianchi CN. Evaluating change in seagrass meadows: a time-framed comparison of Side Scan Sonar maps. Aquat Bot. 2013;104:204–12.CrossRefGoogle Scholar
  12. Mumby PJ, Edwards AJ. Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ. 2002;82(2–3):248–25.CrossRefGoogle Scholar
  13. Mumby PJ, Green EP, Edwards AJ, Clark CD. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J Environ Manag. 1999;55(3):157–66.CrossRefGoogle Scholar
  14. Nellemann C, Corcoran E, editors. Blue carbon. The role of healthy oceans in binding carbon. A rapid response assessment. UNEP/GRID-Arendal: Arendal; 2009.Google Scholar
  15. Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J. Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ. 2008;112:3413–25.CrossRefGoogle Scholar
  16. Pu R, Bell S, Baggett L, Meyer C, Zhao Y. Discrimination of seagrass species and cover classes with in situ hyperspectral data. J Coast Res. 2012;28(6):1330–44.CrossRefGoogle Scholar
  17. Sagawa T, Mikami A, Komatsu T, Kosaka N, Kosako A, Miyazaki S, Takahashi M. Mapping seagrass beds using IKONOS satellite image and side scan sonar measurements: a Japanese case study. Int J Remote Sens. 2008;29(1):281–91.CrossRefGoogle Scholar
  18. Short FT, Coles RG, editors. Global seagrass research methods. Amsterdam: Elsevier Science; 2001. p. 473.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Ecosystem Sciences (CES), School of Biological, Earth and Environmental Sciences (BEES)University of New South Wales (UNSW)KensingtonAustralia

Personalised recommendations