Skip to main content

Surface Water and the Maintenance of Hydrological Regimes

  • Reference work entry
  • First Online:
  • 289 Accesses

Abstract

Wetlands provide essential ecosystem functions and services which are mostly influenced by the specifics of its hydrological regime. Reflecting the spatio-temporal pattern of inflow, storage and outflow of water of a specific wetland, the wetland regime varies with the specific wetland type and the given, often interacting, environmental conditions. In order to remediate, mitigate and prevent human and climate change impacts, the majority of efforts to maintain or restore the hydrological regime focus on the stabilization of water flow dynamics.

This is a preview of subscription content, log in via an institution.

References

  • Acreman MC, Fisher J, Stratford CJ, Mould DJ, Mountford JO. Hydrological science and wetland restoration: some case studies from Europe. Hydr Earth Syst Sci. 2007;11:158–69.

    Article  CAS  Google Scholar 

  • Brammer H. Geographical complexities of detailed impacts assessment for the Ganges-Brahmaputra-Meghna delta of Bangladesh. In: Warrick RA, Barrow EM, Wigley TML, editors. Climate and sea level changeobservations, projections and implications. Cambridge: Cambridge University Press; 1993. p. 246–62.

    Google Scholar 

  • Brandner LM, Florax RJGM, Vermaat JE. The empirics of wetland valuation: a comprehensive summary and a meta-analysis of the literature. Env Res Econ. 2006;33:223–50.

    Article  Google Scholar 

  • Bullock A, Acreman M. The role of wetlands in the hydrological cycle. Hydr Earth Sys Sci. 2003;7:358–89.

    Article  Google Scholar 

  • Faulkner S, Barrow Jr W, Keeland B, Walls S, Telesco D. Effects of conservation practices on wetland ecosystem services in the Mississippi Alluvial Valley. Ecol Appl. 2011;21:31–48.

    Article  Google Scholar 

  • Frazier P, Page K. The effect of river regulation on floodplain wetland inundation, Murrumbidgee River. Aust Marine Freshwat Res. 2006;57:133–41.

    Article  Google Scholar 

  • Galat DL, Fredrikson LH, Humburg DD, Bataille KJ, Bodie JR, Dohrenwend J, Gelwicks GT, Havel JE, Helmers DL, Hooker JB, Jones JR, Knowlton MF, Kubisiak J, Mazourek J, McCoplin AC, Renken RB, Semlitsch RD. Flooding to restore connectivity of regulated, large-river wetlands. BioScience. 1998;48:721–33.

    Article  Google Scholar 

  • Heiler G, Hein T, Schiemer F, Bornette G. Hydrological connectivity and flood pulses as the central aspects for the integrity of a river-floodplain system. Regul Rivers Res Manag. 1995;11:351–61. https://doi.org/10.1002/rrr.3450110309.

    Article  Google Scholar 

  • Helmschrot J. An integrated, landscape-based approach to model the formation and hydrological functioning of wetlands in semiarid headwater catchments of the Umzimvubu River, South Africa. Göttingen: Sierke Verlag; 2006.

    Google Scholar 

  • Hilbich C, Helmschrot J, Mäusbacher R, Daut G. A landscape-based model to characterize the evolution and recent dynamics of wetlands in the Umzimvubu headwaters, Eastern Cape, South Africa. In: Kotowski W, Maltby E, Miroslaw-Swiatek D, Okruszko T, Szatylowicz J, editors. Wetlands: modelling, monitoring, management. London: Taylor & Francis; 2007. p. 61–9.

    Google Scholar 

  • Hill NM, Keddy PA, Wisheu IC. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environ Manag. 1998;22:723–36.

    Article  CAS  Google Scholar 

  • Holden J, Chapman PJ, Labadz JC. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog Phys Geog. 2004;28:95–123.

    Article  Google Scholar 

  • Johnson WC, Werner B, Guntenspergen GR, Voldseth RA, Millett B, Naugle DE, Tulbure M, Carroll RWH, Tracy J, Olawsky C. Prairie wetland complexes as landscape functional units in a changing climate. BioScience. 2010;60:128–40.

    Article  Google Scholar 

  • Kennish MJ. Coastal salt marsh systems in the U.S.: a review of anthropogenic impacts. J Coastal Res. 2001;17:731–48.

    Google Scholar 

  • Lawrie R, Chrystal C, Stretch D. On the role of the Mfolozi in the functioning of St Lucia: Water Balance and Hydrodynamics. WRC Report No. KV 255/10: 99-109. 2011.

    Google Scholar 

  • López-Rosas H, Moreno-Casasola P, López-Barrera F, Sánchez-Higueredo LE, Espejel-González VE, Vázquez J. Interdune wetland restoration in Central Veracruz, Mexico: plant diversity recovery mediated by the hydroperiod. In: Restoration of coastal dunes. Berlin/Heidelberg: Springer; 2013. p. 255–69.

    Chapter  Google Scholar 

  • Lowry C, Loheide S, Deems J, Lundquist J. Linking snowmelt derived recharge and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California. Hydrol Proc. 2010;24:2821–33. https://doi.org/10.1002/hyp.7714.

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG. Wetlands. 4th ed. New York: Wiley; 2007.

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. Response of coastal wetlands to rising sea level. Ecol. 2002;83:2869–77. https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2.

    Article  Google Scholar 

  • Müller Schmied H, Helmschrot J, Flügel W-A. Hydrological functioning of a small wetland patch within a headwater environment in Thuringia, Germany. In: Mander Ü, editor, Wetlands and climate change: new challenges for wetland research, 3rd Annual Meeting of the European Chapter of the Society of Wetland Scientists (SWS), Publicationes Instituti Geographici Universitatis Tartuensis, vol. 106, pp. 70–2, Tartu; 2008.

    Google Scholar 

  • Nishimura A, Tsuyuzaki S. Effects of water level via controlling water chemistry on re-vegetation patterns after peat mining. Wetlands. 2014;34:117–127. http://link.springer.com/article/10.1007%2Fs13157-013-0490-1.

  • Phillips MR, Jones AL. Erosion and tourism infrastructure in the coastal zone: problems, consequences and management. Tour Manag. 2006;27:517–24.

    Article  Google Scholar 

  • Schimelpfenig DW, Cooper DJ, Chimner RA. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Rest Ecol. 2014;22:257–65. https://doi.org/10.1111/rec.12053.

    Article  Google Scholar 

  • Steudel T, Göhmann H, Flügel W-A, Helmschrot J. Hydrological assessment of hydrological dynamics in the upper Okavango. Biodiv Ecol. 2013;5:247–61.

    Article  Google Scholar 

  • Tiner RW. Field guide to coastal wetland plants of the Southeastern United States. Amherst: The University of Massachusetts Press; 1993.

    Google Scholar 

  • Zhang X, Liu H, Baker C, Graham S. Restoration approaches used for degraded peatlands in Ruoergai (Zoige), Tibetan Plateau, China, for sustainable land management. Ecol Eng. 2012;38:86–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Helmschrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Helmschrot, J. (2018). Surface Water and the Maintenance of Hydrological Regimes. In: Finlayson, C.M., et al. The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9659-3_233

Download citation

Publish with us

Policies and ethics