Skip to main content

Neuroscience and Child Well-Being

  • Reference work entry
  • 868 Accesses

Abstract

The goal of this chapter is to highlight the powerful influence that our experience can exert on the brain during development. We begin by providing an overview of brain development, an ongoing process that begins shortly after conception, and ends in early adulthood. We will then discuss how and when experience influences the developing brain. We provide several examples in different domains – sensory, language, memory, and social and emotional development – illustrating the astonishing plastic ability that the brain exhibits throughout development. These examples will provide two critical bits of information: first, a normative experience during the first years of life is essential for brain anatomy and brain function to develop normally; second, each neural circuit is differentially sensitive (malleable or vulnerable) to experience as it matures. Therefore the same experience will not have the same impact during infancy, childhood, or adolescence. In the same way, therapeutics and interventions aimed to alleviate deleterious environmental effects have to be applied during specific times of development, depending on the neural circuit and the function targeted in order to be optimally effective. Overall, we hope this chapter will promote the importance of developmental neuroscience research to better understand the needs of our children and their vulnerabilities, and in so doing to improve child policies and intervention programs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   3,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlam, A., Vargha-Khadem, F., Mishkin, M., & De Haan, M. (2005). Deferred imitation of action sequences in developmental amnesia. Journal of Cognitive Neuroscience, 17, 240–248.

    Article  Google Scholar 

  • Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of Comparative Neurology, 124(3), 319–335.

    Article  Google Scholar 

  • Bachevalier, J., & Vargha-Khadem, F. (2005). The primate hippocampus: Ontogeny, early insult, and memory. Current Opinion in Neurobiology, 15, 168–174.

    Article  Google Scholar 

  • Baddeley, A., Vargha-Khadem, F., & Mishkin, M. (2001). Preserved recognition in case of developmental amnesia: Implications for the acquisition of semantic memory? Journal of Cognitive Neuroscience, 13, 357–369.

    Article  Google Scholar 

  • Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 2883–2901.

    Article  Google Scholar 

  • Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2006). Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. Journal of Neuroscience, 26(17), 4546–4558.

    Article  Google Scholar 

  • Benes, F., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51, 477–484.

    Article  Google Scholar 

  • Black, J. E., Jones, T. A., Nelson, C. A., & Greenough, W. T. (1998). Neuronal plasticity and the developing brain. In N. E. Alessi, J. T. Coyle, S. I. Harrison, & S. Eth (Eds.), Handbook of child and adolescent psychiatry (pp. 31–53). New York: Wiley.

    Google Scholar 

  • Bos, K. J., Fox, N., Zeanah, C. H., & Nelson, C. A. (2009). Effects of early psychosocial deprivation on the development of memory and executive function. Frontiers in Behavioral Neuroscience, 3, 1–7.

    Article  Google Scholar 

  • Bourgeois, J. P., Jastreboff, P. J., & Rakic, P. (1989). Synaptogenesis in visual cortex of normal and preterm monkeys: Evidence for intrinsic regulation of synaptic overproduction. Proceedings of the National Academy of Sciences of the United States of America, 86(11), 4297–4301.

    Article  Google Scholar 

  • Bronner-Fraser, M., & Hatten, M. B. (2003). Neurogenesis and migration. In L. R. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 391–416). New York: Academic.

    Google Scholar 

  • Brown, M., Keynes, R., & Lumsden, A. (2001). The developing brain. Oxford, England: Oxford University Press.

    Google Scholar 

  • Chance, J. E., Turner, A. L., & Goldstein, A. G. (1982). Development of differential recognition for own- and other-race faces. Journal of Psychology, 112, 29–37.

    Article  Google Scholar 

  • Chechik, G., Meilijson, I., & Ruppin, E. (1999). Neuronal regulation: A mechanism for synaptic pruning during brain maturation. Neural Computation, 11(8), 2061–2080.

    Article  Google Scholar 

  • Cheng, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300, 498–502.

    Article  Google Scholar 

  • Curtis, W. J. & Nelson, C. A. (2003). Toward building a better brain: Neurobehavioral outcomes, mechanisms, and processes of environmental enrichment. In Luthar, S. S. (Ed.), Resilience and vulnerability: Adaptation in the context of childhood adversities. New York: Cambridge University Press, pp. 463–488.

    Chapter  Google Scholar 

  • Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., et al. (1997). Anatomical variability in the cortical representation of the first and second language. NeuroReport, 8, 3809–3815.

    Article  Google Scholar 

  • Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & van Engeland, H. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child and Adolescent Psychiatry, 40(9), 1012–1020.

    Article  Google Scholar 

  • Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317.

    Article  Google Scholar 

  • Fagan, J. F. (1972). Infants’ recognition memory for faces. Journal of Experimental Child Psychology, 14(3), 453–476.

    Article  Google Scholar 

  • Fine, I., Smallman, H. S., Doyle, P., & MacLeod, D. I. A. (2002). Visual function before and after the removal of bilateral congenital cataracts in adulthood. Vision Research, 42(2), 191–210.

    Article  Google Scholar 

  • Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 28–40.

    Article  Google Scholar 

  • Gadian, D. G., Aicardi, J., Watkins, K. E., Porter, D. A., Mishkin, M., & Vargha-Khadem, F. (2000). Developmental amnesia associated with early hypoxic-ischaemic injury. Brain, 123(3), 499–507.

    Article  Google Scholar 

  • Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., Vaituzis, A. C., et al. (1996a). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6(4), 551–560.

    Article  Google Scholar 

  • Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., Vauss, Y. C., et al. (1996b). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4–18 years. The Journal of Comparative Neurology, 366(2), 223–230.

    Article  Google Scholar 

  • Gould, E. (2007). How widespread is adult neurogenesis in mammals? Nature Reviews. Neuroscience, 8, 481–488.

    Article  Google Scholar 

  • Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539–559.

    Article  Google Scholar 

  • Greenough, W. T., Wallace, C. S., Alcantra, A. A., Anderson, B. J., Hawrylak, N., Sirevaag, A. M., Weiler, I. J., et al. (1993). Development of the brain: Experience affects the structure of neurons, glia, and blood vessels. In N. J. Anastasiow & S. Harel (Eds.), At-risk infants: Interventions, families, and research (pp. 173–185). Baltimore: Paul H. Brookes.

    Google Scholar 

  • Gunnar, M. (2001). Effects of early deprivation: Findings from orphanage-reared children. In C. A. Nelson & M. Luciana (Eds.), Handbook of Cognitive Neuroscience (pp. 617–629). Cambridge: MIT Press.

    Google Scholar 

  • Huttenlocher, P. R. (1979). Synaptic and dendritic development and mental defect. In N. Buchwald & M. Brazier (Eds.), Brain mechanisms in mental retardation (pp. 123–140). New York: Academic.

    Google Scholar 

  • Huttenlocher, P. R. (1994). Synaptogenesis, synapse elimination, and neural plasticity in human cerebral cortex. In C. A. Nelson (Ed.), Minnesota symposia on child psychology (Cognition, perception, and language, Vol. 27, pp. 35–54). Hilsdale: Lawrence Erlbaum.

    Google Scholar 

  • Huttenlocher, P. R. (2002). Neural plasticity: The effects of environment on the development of the cerebral cortex. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387(2), 167–178.

    Article  Google Scholar 

  • Huttenlocher, P. R., & de Courten, C. (1987). The development of synapses in striate cortex of man. Human Neurobiology, 6, 1–9.

    Google Scholar 

  • Isaacs, E., Vargha-Khadem, F., Watkins, K., Lucas, A., Mishkin, M., & Gadian, D. (2003). Developmental amnesia and its relationship to degree of hippocampal atrophy. Proceedings of the National Academy of Sciences of the United States of America, 100, 13060–13063.

    Article  Google Scholar 

  • Jabès, A., Lavenex, P. B., Amaral, D. G., & Lavenex, P. (2010). Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. European Journal of Neuroscience, 31(2), 273–285.

    Article  Google Scholar 

  • Jabès, A., Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2011). Postnatal development of the hippocampal formation: A stereological study in macaque monkeys. The Journal of Comparative Neurology, 519(6), 1051–1070.

    Article  Google Scholar 

  • Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of the human cerebrum observed in vivo during adolescence. Brain, 114, 2037–2049.

    Article  Google Scholar 

  • Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21, 60–99.

    Article  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (1992). Principles of neural science (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Keith, A. (1948). Human embryology and morphology. London: Edward Arnold.

    Google Scholar 

  • Kempermann, G., Kuhn, G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.

    Article  Google Scholar 

  • Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experienced-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18, 3206–3212.

    Google Scholar 

  • King, J. A., Trinkler, I., Hartley, T., Vargha-Khadem, F., & Burgess, N. (2004). The hippocampal role in spatial memory and the familiarity–recollection distinction: A case study. Neuropsychology, 18(3), 405–417.

    Article  Google Scholar 

  • Knudsen, E. I. (2003). Early experience and critical periods. In L. R. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 555–573). New York: Academic.

    Google Scholar 

  • Koenderink, M. J., & Uylings, H. B. (1995). Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex. A quantitative Golgi analysis. Brain Research, 678, 233–243.

    Article  Google Scholar 

  • Kostovic, I. (1991). Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Progress in Brain Research, 85, 223–240.

    Article  Google Scholar 

  • Kral, A., & Eggermont, J. J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56(1), 259–269.

    Article  Google Scholar 

  • Kriegstein, A. R., & Gotz, M. (2003). Radial glia diversity: A matter of cell fate. Glia, 43(1), 37–43.

    Article  Google Scholar 

  • Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713–727.

    Article  Google Scholar 

  • Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, 100, 9096–9101.

    Article  Google Scholar 

  • Lavenex, P., Banta Lavenex, P., & Amaral, D. G. (2007). Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys. Nature Neuroscience, 10(2), 234–239.

    Article  Google Scholar 

  • Le Bé, J.-V., & Markram, H. (2006). Spontaneous and evoked synaptic rewiring in the neonatal neocortex. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13214–13219.

    Article  Google Scholar 

  • Levitt, P. (2003). Structural and functional maturation of the developing primate brain. The Journal of Pediatrics, 143(4 Suppl.), 35–45.

    Article  Google Scholar 

  • Lie, D. C., Song, H., Colamarino, S. A., Ming, G.-L., & Gage, F. H. (2004). Neurogenesis in the adult brain: New strategies for central nervous system diseases. Annual Review of Pharmacology and Toxicology, 44, 399–421.

    Article  Google Scholar 

  • Lumsden, A., & Kintner, C. (2003). Neural induction and pattern formation. In L. R. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 363–390). New York: Academic.

    Google Scholar 

  • Marin-Padilla, M. (1978). Dual origin of the mammalian neocortex and evolution of the cortical plate. Anatomy and Embryology, 152, 109–126.

    Article  Google Scholar 

  • Maurer, D., Lewis, T. L., Brent, H. P., & Levin, A. V. (1999). Rapid improvement in the acuity of infants after visual input. Science, 286(5437), 108–110.

    Article  Google Scholar 

  • Mayberry, R. I., Lock, E., & Kazmi, H. (2002). Linguistic ability and early language exposure. Nature, 417, 38.

    Article  Google Scholar 

  • Menon, V., Boyett-Anderson, J. M., & Reiss, A. L. (2005). Maturation of medial temporal lobe response and connectivity during memory encoding. Brain Research. Cognitive Brain Research, 25(1), 379–385.

    Article  Google Scholar 

  • Mohindra, I., Jacobson, S. G., & Held, R. (1983). Binocular visual form deprivation in human infants. Documenta Ophthalmologica, 55, 237–249.

    Article  Google Scholar 

  • Molliver, M. E., Kostovi, I., & van der Loos, H. (1973). The development of synapses in cerebral cortex of the human fetus. Brain Research, 50, 403–407.

    Article  Google Scholar 

  • Moulson, M. C., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). Early adverse experiences and the neurobiology of facial emotion processing. Developmental Psychology, 45(1), 17–30.

    Article  Google Scholar 

  • Mrzljak, L., Uylings, H. B. M., Kostovic, I., & Van Eden, C. G. (1988). Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. The Journal of Comparative Neurology, 271, 355–386.

    Article  Google Scholar 

  • Nadarajah, B., & Parnavelas, J. G. (2002). Models of neuronal migration in the developing cerebral cortex. Nature Reviews. Neuroscience, 3, 423–432.

    Article  Google Scholar 

  • Nelson, C. A. (2001). The development and neural bases of face recognition. Infant and Child Development, 10, 3–18.

    Article  Google Scholar 

  • Nelson, C. A. (2003). The development of face recognition reflects an experience-expectant and activity-dependent process. In O. Pascalis & A. Slater (Eds.), The development of face processing in infancy and early childhood: Current perspectives (pp. 79–97). Hauppauge: Nova.

    Google Scholar 

  • Nelson, C. A., & Bloom, F. E. (1997). Child development and neuroscience. Child Development, 68(5), 970–987.

    Article  Google Scholar 

  • Nelson, C. A., Parker, S. W., Guthrie, D., & The BEIP Core Group. (2006a). The discrimination of facial expressions by typically developing infants and toddlers and those experiencing early institutional care. Infant Behavior & Development, 29(2), 210–219.

    Article  Google Scholar 

  • Nelson, C. A., Thomas, K. M., & de Haan, M. (2006b). Neural bases of cognitive development. In W. Damon, R. Lerner, D. Kuhn, & R. Siegler (Eds.), Handbook of child psychology: Cognition, perception, and language (6th ed., pp. 3–57). Hoboken: Wiley.

    Google Scholar 

  • Nelson, C. A., Zeanah, C., Fox, N., Marshall, P., Smyke, A., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest Early Intervention Project. Science, 318, 1937–1940.

    Article  Google Scholar 

  • Newman, A. J., Bavelier, D., Corina, D., Jezzard, P., & Neville, H. J. (2002). A critical period for right hemisphere recruitment in American sign language processing. Nature Neuroscience, 5, 76–80.

    Article  Google Scholar 

  • Ofen, N., Kao, Y. C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., & Gabrieli, J. D. (2007). Development of the declarative memory system in the human brain. Nature Neuroscience, 10(9), 1198–1205.

    Article  Google Scholar 

  • Oppenheim, R. W., & Johnson, J. (2003). Programmed cell death and neurotrophic factors. In L. R. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 499–532). New York: Academic.

    Google Scholar 

  • O’Toole, A. J., Deffenbacher, K. A., Valentin, D., & Abdi, H. (1994). Structural aspects of face recognition and the other-race effect. Memory and Cognition, 22, 208–224.

    Article  Google Scholar 

  • Pascalis, O., & Bachevalier, J. (1998). Face recognition in primates: A cross-species study. Behavioural Processes, 43, 87–96.

    Article  Google Scholar 

  • Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296, 1321–1323.

    Article  Google Scholar 

  • Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., Rapoport, J. L., et al. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908–1911.

    Article  Google Scholar 

  • Perani, D., Paulesu, E., Sebastian Galles, N., Dupoux, E., Dehaene, S., Bettinardi, V., et al. (1998). The bilingual brain. Proficiency and age of acquisition of the second language. Brain, 121, 1841–1852.

    Google Scholar 

  • Petitto, L. A., Zatorre, R. J., Gauna, K., Nikelski, E. J., Dostie, D., & Evans, A. C. (2000). Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proceedings of the National Academy of Sciences, 97(25), 13961–13966.

    Article  Google Scholar 

  • Pollak, S., Nelson, C., Schlaak, M., Roeber, B., Wewerka, S., Wiik, K., Frenn, K., et al. (2010). Neurodevelopmental effects of early deprivation in post-institutionalized children. Child Development, 81(1), 224–236.

    Article  Google Scholar 

  • Pravosudov, V. V., Lavenex, P., & Omanska, A. (2005). Nutritional deficits during early development affect hippocampal structure and spatial memory later in life. Behavioral Neuroscience, 119(5), 1368–1374.

    Article  Google Scholar 

  • Rakic, P., & Nowakowski, R. S. (1981). The time of origin of neurons in the hippocampal region of the rhesus monkey. The Journal of Comparative Neurology, 196(1), 99–128.

    Article  Google Scholar 

  • Richmond, J., & Nelson, C. A. (2008). Mechanisms of change: A cognitive neuroscience approach to declarative memory development. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (2nd ed.). Cambridge, MA: Bradford.

    Google Scholar 

  • Saffran, J. R, Werker, J. F., & Werner, L. A. (2006). Cognition, perception, and language. In R. M. Lerner & W. Damon (Eds.), Handbook of child psychology (6th ed., Vol. 2, pp. 58–108). Hoboken, NJ: Wiley.

    Google Scholar 

  • Sanes, D., & Bao, S. (2009). Tuning up the developing auditory CNS. Current Opinion in Neurobiology, 19(2), 188–199.

    Article  Google Scholar 

  • Sanes, D. H., Reh, T. A., & Harris, W. A. (2011). Chapter 5. Axon growth and guidance. In Development of the nervous system (3rd ed., pp. 105–142). Oxford, UK: Academic.

    Google Scholar 

  • Scott, L., & Nelson, C. A. (2004). The developmental neurobiology of face processing. In B. J. Casey (Ed.), Developmental psychobiology (Review of psychiatry series, Vol. 23, pp. 29–68). Arlington: American Psychiatric Publishing.

    Google Scholar 

  • Sharma, A., Dorman, M. F., & Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear and Hearing, 23(6), 532–539.

    Article  Google Scholar 

  • Sharma, A., Dorman, M. F., & Kral, A. (2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hearing Research, 203(1–2), 134–143.

    Article  Google Scholar 

  • Sidman, R., & Rakic, P. (1982). Development of the human central nervous system. In W. Haymaker & R. D. Adams (Eds.), Histology and histopathology of the nervous system (pp. 3–145). Springfield: Charles C Thomas.

    Google Scholar 

  • Sluzenski, J., Newcombe, N. S., & Kovacs, S. L. (2006). Binding, relational memory, and recall of naturalistic events: A developmental perspective. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 89–100.

    Article  Google Scholar 

  • Smyke, A., Koga, S., Johnson, D., Fox, N., Marshall, P., Nelson, C., Zeanah, C., et al. (2007). The caregiving context in institution-reared and family-reared infants and toddlers in Romania. Journal of Child Psychology and Psychiatry, 48(2), 210–218.

    Article  Google Scholar 

  • Smyke, A. T., Zeanah, C. H., Fox, N. A., Nelson, C. A., & Guthrie, D. (2010). Placement in foster care enhances quality of attachment among young institutionalized children. Child Development, 81(1), 212–223.

    Article  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2(10), 859–861.

    Article  Google Scholar 

  • Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13515–13522.

    Article  Google Scholar 

  • Tessier-Lavigne, M., & Goodman, C. S. (1996). The molecular biology of axon guidance. Science, 274(5290), 1123–1133.

    Article  Google Scholar 

  • Turkheimer, E., Haley, A., Waldron, M., Onofrio, B. D., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.

    Article  Google Scholar 

  • van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews. Neuroscience, 1(3), 191–198.

    Article  Google Scholar 

  • Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., VanPaesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277(5324), 376–380.

    Article  Google Scholar 

  • Vargha-Khadem, F., Gadian, D., & Mishkin, M. (2001). Dissociations in cognitive memory: The syndrome of developmental amnesia. Philosophical Transactions of the Royal Society London (Biology), 356, 1435–1440.

    Article  Google Scholar 

  • Vargha-Khadem, F., Salmond, C. H., Watkins, K. E., Friston, K. J., Gadian, D. G., & Mishkin, M. (2003). Developmental amnesia: Effect of age at injury. Proceedings of the National Academy of Sciences of the United States of America, 100, 10055–10060.

    Article  Google Scholar 

  • Webb, S. J., Monk, C. S., & Nelson, C. A. (2001). Mechanisms of postnatal neurobiological development: Implications for human development. Developmental Neuropsychology, 19(2), 147–171.

    Article  Google Scholar 

  • Werner, L., Fay, R. R., & Popper, A. N. (Eds.). (2012). Human auditory development. New York: Springer.

    Google Scholar 

  • Windsor, J., Benigno, J. P., Wing, C. A., Carroll, P. J., Koga, S. F., Nelson, C. A., Fox, N. A., et al. (2011). Effect of foster care on young children’s language learning. Child Development, 82(4), 1040–1046.

    Article  Google Scholar 

  • Zeanah, C. H., Nelson, C. A., Fox, N. A., Smyke, A. T., Marshall, P., Parker, S. W., & Koga, S. (2003). Designing research to study the effects of institutionalization on brain and behavioral development: The Bucharest Early Intervention Project. Development and Psychopathology, 15, 885–907.

    Article  Google Scholar 

  • Zeanah, C. H., Smyke, A. T., Koga, S. F., Carlson, E., & The BEIP Core Group. (2005). Attachment in institutionalized and community children in Romania. Child Development, 76(5), 1015–1028.

    Article  Google Scholar 

  • Zhang, L. I., Bao, S., & Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2309–2314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Jabès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Jabès, A., Nelson, C.A. (2014). Neuroscience and Child Well-Being. In: Ben-Arieh, A., Casas, F., Frønes, I., Korbin, J. (eds) Handbook of Child Well-Being. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9063-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9063-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9062-1

  • Online ISBN: 978-90-481-9063-8

  • eBook Packages: Humanities, Social Sciences and Law

Publish with us

Policies and ethics