Skip to main content

Contemporary Strategies in Natural Products Structure Elucidation

  • Reference work entry
  • First Online:

Abstract

This chapter will describe the four primary spectroscopic techniques utilized for organic structure analysis: nuclear magnetic resonance (NMR), infrared (IR), ultraviolet–visible (UV–VIS), and mass spectrometry (MS). Each of these methods is used on a daily basis by most organic chemists in the course of structure elucidation analysis, requiring a very small amount of material in a generally nondestructive approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crews P, Rodríguez J, Jaspars M (2010) Organic structure analysis, Chapter 1, 2nd edn. Oxford University Press, New York

    Google Scholar 

  2. (a) Vogel AI, Tatchell AR, Furnis BS, Hannaford AJ, Smith, PWG (1996) Vogel’s textbook of practical organic chemistry, 5th edn. Prentice Hall, New York; (b) McMurry J (2007) Organic chemistry, 7th edn. Brooks/Cole, Pacific Grove; (c) Vollhardt PC, Shore NE (2005) Organic chemistry structure and function, 5th edn. W. H. Freeman, San Francisco

    Google Scholar 

  3. Jiménez JI, Scheuer PJ (2001) New lipopeptides from the Caribbean cyanobacterium Lyngbya majuscule. J Nat Prod 64:200–203

    Article  PubMed  Google Scholar 

  4. Iorizzi M, Bifulco G, De Riccardis F, Minale L, Riccio R, Zollo F (1995) Starfish saponins, part 53. A reinvestigation of the polar steroids from the starfish Oreaster reticulatus: isolation of sixteen steroidal oligoglycosides and six polyhydroxysteroids. J Nat Prod 58:10–25

    Article  PubMed  CAS  Google Scholar 

  5. Niu C, Ho DM, Zask A, Ayral-Kaloustian S (2010) Absolute configurations of tubulin inhibitors taltobulin (HTI-286) and HTI-042 characterized by X-ray diffraction analysis and NMR studies. Bioorg Med Chem Lett 20:1535–1538

    Article  PubMed  CAS  Google Scholar 

  6. Luppi L, Cesaretti M, Volpi N (2005) Purification and characterization of heparin from the Italian clam Callista chione. Biomacromolecules 6:1672–1678

    Article  PubMed  CAS  Google Scholar 

  7. Smith MB, March J (2006) March's advanced organic chemistry, 6th edn. Wiley, Hoboken

    Book  Google Scholar 

  8. Ueki Y, Itoh M, Katoh T, Terashima S (1996) Synthesis of various model compounds for the central tricyclic ring system of popolophuanone E. Tetrahedron Lett 37:5719–5772

    Article  CAS  Google Scholar 

  9. Shriner RL, Hermann CKF, Morrill TC, Curtin DY, Fuson RYC (2003) Systematic identification of organic compounds, 8th edn. Wiley, Hoboken

    Google Scholar 

  10. Main P, Clegg W, Blake AJ, Gould RO (2002) Crystal structure analysis. Principles and practice. Oxford University Press, New York

    Google Scholar 

  11. Pretsch E, Büelhmann P, Badertscher M (2009) Tables of spectral data for structure determination of organic compounds, 4th edn. Springer, Berlin

    Google Scholar 

  12. Bobzin SC, Yang S, Kasten TP (2000) LC-NMR: a new tool to expedite the dereplication and identification of natural products. J Ind Microbiol Biotechnol 25:342–345

    Article  PubMed  CAS  Google Scholar 

  13. Chemspider a free text and structure searching tool at www.chemspider.com

  14. MarinLit: a comprehensive database of the literature for marine natural products. Version February 2011. http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml. Accessed 21 Nov 2011

  15. Eliel EL (2004) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  16. Crews P, Rodríguez J, Jaspars M (2010) Organic structure analysis, Chapter 6, 2nd edn. Oxford University Press, New York

    Google Scholar 

  17. (a) Ma TS, Rittner RC (1979) Modern organic elemental analysis. Taylor & Francis, Marcel Dekker Inc., New York; (b) Bance S (1980) Handbook of practical organic microanalysis recommended methods for determining elements and groups. Ellis Horwood Limited, Chichester

    Google Scholar 

  18. “Guidelines for authors” ACS Paragon Plus Web Site: pubs.ACS.org/paragonplus. Accessed 21 Nov 2011

  19. (a) Budzikiewicz H, Djerassi C, Williams DH (1967) Mass spectrometry of organic compounds. Holden Day, San Francisco; (b) McLafferty, FW, Turecek F (1993) Interpretation of mass spectra, 4th edn. University Science Books, Mill Valley; (c) Howe I, Williams, DH, Brown RD (1981) Mass spectrometry: principles and applications, 2nd edn. McGraw-Hill, New York; (d) Watson JT, Sparkman OD (2007) Introduction to mass spectrometry, 4th edn. John Wiley & Sons Ltd., West Sussex

    Google Scholar 

  20. (a) Chapman JR (1995) Practical organic mass spectrometry 2nd edn. Wiley, New York; (b) Desiderio DM (1992) Practical organic mass spectrometry. Modern analytical chemistry series, vol I. Plenum, New York

    Google Scholar 

  21. Harrison AG (1992) Chemical ionization mass spectrometry, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  22. (a) Cole RB (1997) Electrospray mass spectrometry. Wiley, New York; (b) Pramanik BN, Gross ML (2002) Applied electrospray mass spectrometry. Marcel Dekker, New York

    Google Scholar 

  23. (a) Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under Ambient conditions. Anal Chem 77:2297–2302; (b) Smith NJ, Domin MA, Scott LT (2008) HRMS directly from TLC slides. A powerful tool for rapid analysis of organic mixtures. Org Lett 10:3493–3496

    Google Scholar 

  24. (a) Karas M, Bahr U, Giessman U (1991) Matrix-assisted laser desorption ionization mass spectrometry. Mass Spec Rev 10:335–357; (b) Hillenkamp F, Katalinic JP (2007) MALDI MS: a practical guide to instrumentation, methods and applications. Wiley, Weinheim

    Google Scholar 

  25. (a) Hsu CS (1984) Diophantine approach to isotopic abundance calculations. Anal Chem 56:1356–1361; (b) http://www.sisweb.com/mstools.htm. (c) MS tools to calculate isotopic distributions. http://www.shef.ac.uk/∼chem/chemuter/isotopes.html; (d) Rockwood AL, Van Orden SL (1996) Ultrahigh-speed calculation of isotope distributions. Anal Chem 68:2027–2030

    Google Scholar 

  26. Darias J, Rovirosa J, San Martin A, Díaz A, Dorta E, Cueto M (2001) Furoplocamioids A-C, novel polyhalogenated furanoid monoterpenes from Plocamium cartilagineum. J Nat Prod 64:1383–1387

    Article  PubMed  CAS  Google Scholar 

  27. (a) Dawson PH (1976) Quadrupole mass spectrometry. Elsevier, Amsterdam; (b) Dawson PH (1997) Quadrupole mass spectrometry and its applications. AVS classics in vacuum science and technology. American Inst. of Physics

    Google Scholar 

  28. March RE (2005) Quadrupole ion trap mass spectroscopy. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  29. Makarov A (2000) Electrostatic axially harmonic orbital trapping: high-performance technique of mass analysis. Anal Chem 72:1156–1162

    Article  PubMed  CAS  Google Scholar 

  30. Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577

    Article  CAS  Google Scholar 

  31. Dalisay DS, Morinaka BI, Skepper CK, Molinski TF (2009) A tetrachloro polyketide hexahydro-1H-isoindolone, muironolide A, from the marine sponge Phorbas sp. Natural products at the nanomole scale. J Am Chem Soc 131:7552–7553

    Article  PubMed  CAS  Google Scholar 

  32. (a) McMaster, MC (2005) LC/MS: a practical user’s guide. Wiley, Hoboken, New Jersey; (b) Robert EA (2003) Liquid chromatography-mass spectrometry: an introduction. Wiley, Hoboken, New Jersey

    Google Scholar 

  33. (a) Newton RP (1992) Mass spectrometry in the biological sciences: a tutorial, Chapters 2, 3, and 26. Kluwer, Dordrecht (b) Yates, JR, Eng JK, McCormack AL, Schielts D (1995) Direct analysis of protein mixtures by tandem mass spectrometry. Anal Chem 67:1426–1436

    Google Scholar 

  34. Chapman JR (2006) Mass spectrometry of proteins and peptides in methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  35. Crews P, Rodríguez J, Jaspars M (2010) Organic structure analysis, Chapter 3, 4 and 5, 2nd edn. Oxford University Press, New York

    Google Scholar 

  36. Bovey FA (1968) NMR spectroscopy. Academic, New York

    Google Scholar 

  37. (a) Stothers JB (1972) Carbon-13. In: NMR spectroscopy. Academic Press, New York; (b) Breitmaier E, Voelter, W (1987) Carbon-13. In: NMR spectroscopy, 3 rd edn. VCH, Weinheim

    Google Scholar 

  38. (a) Becker ED (1980) High resolution NMR theory and chemical applications, 2nd edn. Academic, New York. pp 202–206 of this book give an excellent description of many first- and second-order splitting patterns; (b) Bible RH (1963) Interpretation of NMR: an empirical approach. Plenum, New York

    Google Scholar 

  39. Hoye TR, Hanson PR, Vyvyan JR (1994) A practical guide to first-order multiplet analysis in 1H NMR spectroscopy. J Org Chem 59:4096–4103

    Article  CAS  Google Scholar 

  40. Gutowsky HS, Karplus M, Grant DM (1959) Angular dependence of electron-coupled proton interactions in CH2 groups. J Chem Phys 31:1278–1289

    Article  CAS  Google Scholar 

  41. (a) Breitmaier E, Voelter W (1987) C-13 NMR spectroscopy, 3 rd edn. VCH, Weinheim; (b) Marshall JH (1983) Carbon-carbon and carbon-proton NMR couplings: application to stereochemistry and conformational analysis. Verlag Chemie International, Deerfield Beach; (c) Pretsch E, Buhlmann P, Affolter C (2000) Structure determination of organic compounds: tables of spectral data. Springer, New York

    Google Scholar 

  42. Haasnoot CAG, de Leeuw FAAM, Altona CA (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities—I: An empirical generalization of the karplus equation 7. Tetrahedron 36:2783–2792

    Article  CAS  Google Scholar 

  43. Matsumori N, Kaneno D, Murata M, Nakamura H, Tachibana K (1999) Stereochemical determination of acyclic structures based on carbon − proton spin-coupling constants. A method of configuration analysis for natural products. J Org Chem 64:866–876

    Article  PubMed  CAS  Google Scholar 

  44. (a) Noggle JH, Schirmer RE (1971) The nuclear overhauser effect. Academic, New York; (b) Friebolin H (2005) Basic one and two dimensional NMR spectroscopy 4th edn. VCH, Weinheim; (c) Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon, New York; (d) Sanders JKM, Hunter BK (1993) Modern NMR spectroscopy, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  45. (a) Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of NMR in one and two dimensions. Clarendon Press, Oxford; (b) Freeman R (1999) Spin choreography - Basic steps in high resolution NMR. Oxford University Press, Sausalito (CA)

    Google Scholar 

  46. (a) Claridge TDW (2008) High-resolution NMR techniques in organic chemistry. Elsevier Science, Burlington; (b) Sanders JKM, Hunter BK (1993) Modern NMR spectroscopy, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  47. Kupce E, Freeman R (2008) Molecular structure from a single NMR experiment. J Am Chem Soc 130:10788–10792

    Article  PubMed  CAS  Google Scholar 

  48. Reynolds WF, Enriquez RG (2002) Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy. J Nat Prod 65:221244; Berger S, Braun S (2004) 200 and more NMR experiments - A practical course. VCH, Weinheim

    Google Scholar 

  49. Reiff B, Kock M, Kerssebaum R, Kang H, Fenical W, Griesinger C (1996) ADEQUATE, a new set of experiments to determine the constitution of small molecules at natural abundance. J Mag Reson A118:282–285

    Google Scholar 

  50. Elyashberg M, Williams AJ, Blinov K (2010) Structural revisions of natural products by Computer-Assisted Structure Elucidation (CASE) systems. Nat Prod Rep 27:1296–1328

    Article  PubMed  CAS  Google Scholar 

  51. Based on Chapters 9, and 10 of Crews P, Rodríguez J, Jaspars M (2010) Organic structure analysis, 2nd edn. Oxford University Press, New York

    Google Scholar 

  52. Socrates GIR (1994) Characteristic group frequencies, 2nd edn. Wiley, New York

    Google Scholar 

  53. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) Infrared and Raman characteristic frequencies of organic molecules. Academic, New York

    Google Scholar 

  54. Pouchert CJ, Behnke C (eds) (1985) Aldrich library of FT-IR spectra, 1st edn. Aldrich Chemical Company, Milwaukee. Also available on CD-ROM. Many IR spectra are now provided for compounds sold on the Aldrich website: www.sigmaaldrich.com

  55. Rodger A, Nordén B (1997) Circular dichroism and linear dichroism. Oxford University Press, Oxford

    Google Scholar 

  56. Berova N, Nakanishi K, Woody RW (eds) (2000) Circular dichroism, principles and applications. VCH, Weinheim

    Google Scholar 

  57. Lightner DA, Gurst JE (2000) Organic conformational analysis and stereochemistry from circular dichroism spectroscopy. Wiley, New York

    Google Scholar 

  58. Zhao N, Kumar K, Neuenschwander K, Nakanishi K, Berova N (1995) Quaternary ammonium salts as chromophores for exciton-coupled circular dichroism: absolute configuration of hypocholesterolemic quinuclidines. J Am Chem Soc 117:7844–7845

    Article  CAS  Google Scholar 

  59. Nicolaou KC, Zinder SA (2005) Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed 44:1012–1044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the Spanish Ministerio de Ciencia e Innovación for grant CTQ2008-04024/BQU. Also thanks to professors Maria Ruiz-Pita Romero, Montserrat Martinez Cebeiro, Jose Pérez Sestelo, and Vicente Ojea Cao for providing NMR spectra for the study questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Rodríguez, J., Crews, P., Jaspars, M. (2012). Contemporary Strategies in Natural Products Structure Elucidation. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_7

Download citation

Publish with us

Policies and ethics