Skip to main content

Marine Natural Products Active Against Protozoan Parasites

  • Reference work entry
  • First Online:
Handbook of Marine Natural Products

Abstract

Protozoa are the causative agents of human diseases which affect more than one billion people and cause more than one million deaths per year, with a particular incidence in developing countries. The major contribution to these dramatic numbers is given by malaria, followed by leishmaniasis and trypanosomiasis (African trypanosomiasis and Chagas’ disease).

In this chapter we have provided an overview of the most significant contributions given by marine natural product chemistry to the field of antiprotozoan drug research. We have selected more than 70 marine secondary metabolites belonging to different chemical classes, which are active (commonly only in vitro data are available) against one or more protozoan strains. When available, details on structure–activity relationship studies and investigation of the mechanisms of action have been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Data taken from Malaria Foundation International. http://www.malaria.org and linked sites. Accessed 3 May 2010

  2. Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375:148–159

    Article  PubMed  Google Scholar 

  3. Bern C, Maguire JH, Alvar J (2008) Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl Trop Dis 2:e313

    Article  PubMed  Google Scholar 

  4. Reithinger R (2008) Leishmaniases’ burden of disease: ways forward for getting from speculation to reality. PLoS Negl Trop Dis 2:e285

    Article  PubMed  Google Scholar 

  5. Mayer AM, Rodriguez AD, Berlinck RG, Hamann MT (2009) Marine pharmacology in 2005–6: marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Biochim Biophys Acta 1790:283–308 and previous reviews of this series

    Article  PubMed  CAS  Google Scholar 

  6. Fattorusso E, Taglialatela-Scafati O (2009) Marine antimalarials. Mar Drugs 7:130–152 and other reviews cited herein

    Article  PubMed  CAS  Google Scholar 

  7. Casteel DA (1997) Antimalarial agents. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery. vol 5. Wiley, New York, pp 3–91

    Google Scholar 

  8. Collins WE, Barnwell JW (2008) A hopeful beginning for malaria vaccines. N Engl J Med 359:2599–2601

    Article  PubMed  CAS  Google Scholar 

  9. Breman JG, Egan A, Keusch G (2001) The intolerable burden of malaria: a new look at the numbers. Am J Trop Med Hyg 64:iv–vii

    PubMed  CAS  Google Scholar 

  10. Olliaro P, Cattani J, Wirth D (1996) Malaria, the submerged disease. JAMA 275:230–233

    Article  PubMed  CAS  Google Scholar 

  11. Gardner MJ, Hall N et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  12. Klayman DL, Lin AJ, Acton N et al (1984) Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J Nat Prod 47:715–717

    Article  PubMed  CAS  Google Scholar 

  13. Avery MA, Chong WKM, Jennings-White C (1992) Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc 114:974–979

    Article  CAS  Google Scholar 

  14. Haynes RK, Ho W, Chan H (2004) Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity. Angew Chem Int Ed 43:1381–1385

    Article  CAS  Google Scholar 

  15. Kobayashi M, Kondo K, Kitagawa I (1993) Antifungal peroxyketal acids from an Okinawan marine sponge of Plakortis sp. Chem Pharm Bull 41:1324–1326

    Article  PubMed  CAS  Google Scholar 

  16. Murakami N, Kawanishi M, Itagaki S et al (2002) New readily accessible peroxides with high antimalarial potency. Bioorg Med Chem Lett 12:69–72

    Article  PubMed  CAS  Google Scholar 

  17. Murakami N, Kawanishi M, Mostaqul HM et al (2003) New anti-malarial peroxides with in vivo potency derived from spongean metabolites. Bioorg Med Chem Lett 13:4081–4084

    Article  PubMed  CAS  Google Scholar 

  18. Kawanishi M, Kotoku N, Itagaki S et al (2004) Structure-activity relationship of anti-malarial spongean peroxides having a 3-methoxy-1,2-dioxane structure. Bioorg Med Chem 12:5297–5307

    Article  PubMed  CAS  Google Scholar 

  19. Quinoa E, Kho E, Manes LV, Crews P (1986) Heterocycles from the marine sponge Xestospongia sp. J Org Chem 51:4260–4264

    Article  CAS  Google Scholar 

  20. Fattorusso C, Persico M, Calcinai B, Cerrano C, Parapini S, Taramelli D, Novellino E, Romano A, Scala F, Fattorusso E, Taglialatela-Scafati O (2010) Manadoperoxides A−D from the indonesian sponge Plakortis cfr. simplex. Further insights on the structure−activity relationships of simple 1,2-dioxane antimalarials. J Nat Prod 73:1138–1145

    Article  PubMed  CAS  Google Scholar 

  21. Higgs MD, Faulkner DJ (1978) Plakortin, an antibiotic from Plakortis halichondrioides. J Org Chem 43:3454–3457

    Article  CAS  Google Scholar 

  22. Cafieri F, Fattorusso E, Taglialatela-Scafati O, Ianaro A (1999) Metabolites from the sponge Plakortis simplex. Determination of absolute stereochemistry of plakortin. Isolation and stereostructure of three plakortin related compounds. Tetrahedron 55:7045–7056

    Article  CAS  Google Scholar 

  23. Campagnuolo C, Fattorusso E, Romano A, Taglialatela-Scafati O, Basilico N, Parapini S, Taramelli D (2005) Antimalarial polyketide cycloperoxides from the marine sponge Plakortis simplex. Eur J Org Chem 2005:5077–5083

    Article  Google Scholar 

  24. Fattorusso E, Parapini S, Campagnuolo C, Basilico N, Taglialatela-Scafati O, Taramelli D (2002) Activity against Plasmodium falciparum of cycloperoxide compounds obtained from the sponge Plakortis simplex. J Antimicrob Chemother 50:883–888

    Article  PubMed  CAS  Google Scholar 

  25. Fattorusso C, Campiani G, Catalanotti B, Persico M, Basilico N, Parapini S, Taramelli D, Campagnuolo C, Fattorusso E, Romano A, Taglialatela-Scafati O (2006) Endoperoxide derivatives from marine organisms: 1,2-dioxanes of the plakortin family as novel antimalarial agents. J Med Chem 49:7088–7094

    Article  PubMed  CAS  Google Scholar 

  26. Taglialatela-Scafati O, Fattorusso E, Romano A, Scala F, Barone V, Cimino P, Stendardo E, Catalanotti B, Persico M, Fattorusso C (2010) Insight into the mechanism of action of plakortins, simple 1,2-dioxane antimalarials. Org Biomol Chem 8:846–856

    Article  PubMed  CAS  Google Scholar 

  27. Hu J, Gao H, Kelly M et al (2001) Plakortides K-N, four new cyclic peroxides from an undescribed Jamaican sponge Plakortis sp. (Homosclerophorida, Plakinidae). Tetrahedron 57:9379–9383

    Article  CAS  Google Scholar 

  28. Jimenez MS, Garzon SP, Rodriguez AD (2003) Plakortides M and N, bioactive polyketide endoperoxides from the Caribbean marine sponge Plakortis halichondrioides. J Nat Prod 66:655–661

    Article  Google Scholar 

  29. Laroche M, Imperatore C, Grozdanov L et al (2006) Cellular localization of secondary metabolites isolated from the Caribbean sponge Plakortis simplex. Marine Biol 151:1365–1373

    Article  Google Scholar 

  30. El Sayed KA, Dunbar DC, Goins DK et al (1996) The marine environment: a resource for prototype antimalarial agents. J Nat Toxins 5:261–285

    CAS  Google Scholar 

  31. El Sayed KA, Hamann MT, Hashish NE et al (2001) Antimalarial, antiviral, and antitoxoplasmosis norsesterterpene peroxide acids from the Red Sea sponge Diacarnus erythraeanus. J Nat Prod 64:522–524

    Article  PubMed  CAS  Google Scholar 

  32. D’Ambrosio M, Guerriero A, Deharo E et al (1998) New types of potentially antimalarial agents. Epidioxy-substituted norditerpene and norsesterterpenes from the marine sponge Diacarnus levii. Helv Chim Acta 81:1285–1292

    Article  Google Scholar 

  33. Cafieri F, Fattorusso E, Magno S, Santacroce C, Sica D (1973) Isolation and structure of axisonitrile 1 and axisothiocyanate 1, two unusual sesquiterpenoids from the marine sponge Axinella cannabina. Tetrahedron 29:4259–4262

    Article  CAS  Google Scholar 

  34. Fattorusso E, Magno S, Mayol L, Santacroce C, Sica D (1974) Isolation and structure of axisonitrile 2. New sesquiterpenoid isonitrile from the sponge Axinella cannabina. Tetrahedron 30:3911–3913

    Article  CAS  Google Scholar 

  35. Di Blasio B, Fattorusso E, Magno S, Mayol L, Pedone C, Santacroce C, Sica D (1976) Axisonitrile-3, axisothiocyanate-3 and axamide-3. Sesquiterpenes with a novel spiro[4,5]decane skeleton from the sponge Axinella cannabina. Tetrahedron 32:473–478

    Article  Google Scholar 

  36. Angerhofer CK, Pezzuto JM, Koenig GM, Wright AD, Sticher O (1992) Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. J Nat Prod 55:1787–1789

    Article  PubMed  CAS  Google Scholar 

  37. Koenig GM, Wright AD, Angerhofer CK (1996) Novel potent antimalarial diterpene isocyanates, isothiocyanates, and isonitriles from the tropical marine sponge Cymbastela hooperi. J Org Chem 61:3259–3267

    Article  CAS  Google Scholar 

  38. Wrigh AD, Lang-Unnasch N (2009) Diterpene formamides from the tropical marine sponge Cymbastela hooperi and their antimalarial activity in vitro. J Nat Prod 72:492–495

    Article  Google Scholar 

  39. Miyaoka H, Shimomura M, Kimura H, Yamada Y, Kim HS, Wataya Y (1998) Antimalarial activity of kalihinol A and new relative diterpenoids from the Okinawan sponge, Acanthella sp. Tetrahedron 54:13467–13474

    Article  CAS  Google Scholar 

  40. Wright AD, Wang H, Gurrath M, Koenig GM, Kocak G, Neumann G, Loria P, Foley M, Tilley L (2001) Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J Med Chem 44:873–885

    Article  PubMed  CAS  Google Scholar 

  41. Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108:6404–6405

    Article  CAS  Google Scholar 

  42. Yousaf M, El Sayed KA, Rao KV, Lim CW, Hu J, Kelly M, Franzblau SG, Zhang F, Peraud O, Hill RT, Hamann MT (2002) 12,34-Oxamanzamines, novel biocatalytic and natural products from manzamine producing Indo-Pacific sponges. Tetrahedron 58:7397–7402

    Article  CAS  Google Scholar 

  43. Wypych JC, Nguyen TM, Nuhant P, Benechie M, Marazano C (2008) Further insight from model experiments into a possible scenario concerning the origin of manzamine alkaloids. Angew Chem Int Ed 47:5418–5421

    Article  CAS  Google Scholar 

  44. Ang KKH, Holmes MJ, Higa T, Hamann MT, Kara UAK (2000) In vivo antimalarial activity of the.beta.-carboline alkaloid manzamine A. Antimicrob Agents Chemother 44:1645–1649

    Article  PubMed  CAS  Google Scholar 

  45. Rao KV, Donia MS, Pen J, Garcia-Palomero E, Alonso D, Martinez A, Medina M, Franzblau SG, Tekwani BL, Khan SI, Wayhuono S, Willett KL, Hamann MT (2006) Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical Parasitic, and alzheimer’s diseases. J Nat Prod 69:1034–1040

    Article  PubMed  CAS  Google Scholar 

  46. Shilabin AG, Kasanah N, Tekwani BL, Hamann MT (2008) Kinetic studies and bioactivity of potential manzamine prodrugs. J Nat Prod 71:1218–1221

    Article  PubMed  CAS  Google Scholar 

  47. Rao KV, Santarsiero BD, Mesecar AD, Schinazi RF, Tekwani BL, Hamann MT (2003) New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J Nat Prod 66:823–828

    Article  PubMed  CAS  Google Scholar 

  48. Hamann MT, Alonso D, Martin-Aparicio E, Fuertes A, Perez-Puerto J, Castro A, Morales S, Navarro ML, del Monte-Millan M, Medina M, Pennaka H, Balaiah A, Peng J, Cook J, Wahyuono S, Martinez A (2007) Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease. J Nat Prod 70:1397–1405

    Article  PubMed  CAS  Google Scholar 

  49. Kirsch G, Koeng GM, Wright AD, Kaminsky R (2000) A new bioactive sesterterpene and antiplasmodial alkaloids from the marine sponge Hyrtios cf. erecta. J Nat Prod 63:825–829

    Article  PubMed  CAS  Google Scholar 

  50. Davis RA, Duffy S, Avery VM, Camp D, Hooper JNA, Quinn RJ (2010) (+)-7-Bromotrypargine: an antimalarial β-carboline from the Australian marine sponge Ancorina sp. Tetrahedron Lett 51:583–585

    Article  CAS  Google Scholar 

  51. Steffan B (1991) Lepadin A, a decahydroquinoline alkaloid from the tunicate Clavelina lepadiformis. Tetrahedron 42:8729–8732

    Article  Google Scholar 

  52. Wright AD, Goclik E, Koenig GM, Kaminsky RJ (2002) Lepadins D−F: antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J Med Chem 45:3067–3072

    Article  PubMed  CAS  Google Scholar 

  53. Kourany-Lefoll E, Pais M, Sevenet T, Guittet E, Montagnac A, Fontaine C, Guenard D, Adeline MT, Debitus C (1992) Phloeodictines A and B: new antibacterial and cytotoxic bicyclic amidinium salts from the new Caledonian sponge, Phloeodictyon sp. J Org Chem 57:3832–3835

    Article  CAS  Google Scholar 

  54. Mancini I, Guella G, Sauvain M, Debitus C, Duigou A, Ausseil F, Menou J, Pietra F (2004) New 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrimidinium alkaloids (phloeodictynes) from the New Caledonian shallow-water haplosclerid sponge Oceanapia fistulosa. Structural elucidation from mainly LC-tandem-MS-soft-ionization techniques and discovery of antiplasmodial activity. Org Biomol Chem 2:783–787

    Article  PubMed  CAS  Google Scholar 

  55. Tymiak AA, Rinehart KL (1985) Constituents of morphologically similar sponges. Aplysina and smenospongia species. Tetrahedron 41:1039–1047

    Article  CAS  Google Scholar 

  56. Hu J, Schetz JA, Kelly M, Peng J, Ang KKH, Flotow H, Leong CY, Ng SB, Buss AD, Wilkins SP, Hamann MT (2002) New antiinfective and human 5-HT2 receptor binding natural and semisynthetic compounds from the Jamaican sponge Smenospongia aurea. J Nat Prod 65:476–480

    Article  PubMed  CAS  Google Scholar 

  57. Scala F, Fattorusso E, Menna M, Taglialatela-Scafati O, Tierney M, Kaiser M, Tasdemir D (2010) Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar Drugs 8:2162–2174

    Article  PubMed  CAS  Google Scholar 

  58. Benoit-Vical F, Saléry M, Soh PN, Ahond A, Poupat C (2008) Girolline: a potential lead structure for antiplasmodial drug research. Planta Med 74:438–444

    Article  PubMed  CAS  Google Scholar 

  59. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora. Angew Chem Int Ed 42:355–357

    Article  CAS  Google Scholar 

  60. Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P, Le Roch K (2008) Marine actinomycetes: a new source of compounds against the Human malaria parasite. PLoS One 3:e2335

    Article  PubMed  Google Scholar 

  61. Linington RG, Gonzalez J, Urena LD, Romero LI, Ortega-Barria E, Gerwick WH (2007) Venturamides A and B: antimalarial constituents of the panamanian marine cyanobacterium Oscillatoria sp. J Nat Prod 70:397–401

    Article  PubMed  CAS  Google Scholar 

  62. McPhail KL, Correa J, Linington RG, Gonzalez J, Ortega-Barria E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:984–988

    Article  PubMed  CAS  Google Scholar 

  63. Linington RG, Clark BR, Trimble EE, Almanza A, Urena LD, Kyle DE, Gerwick WH (2009) Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J Nat Prod 72:14–17

    Article  PubMed  CAS  Google Scholar 

  64. Mizuno Y, Makioka A, Kawazu S, Kano S, Kawai S, Akaki M, Aikawa M, Ohtomo H (2002) Effect of jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium falciparum. Parasitol Res 88:844–848

    Article  PubMed  Google Scholar 

  65. Nakamura H, Kobayashi J, Kobayashi M, Ohizumi Y, Hirata Y (1985) Physiologically active marine natural products from Porifera. VII. Xestoquinone. A novel cardiotonic marine natural product isolated from the Okinawan sea sponge Xestospongia sapra. Chem Lett 6:713–716

    Article  Google Scholar 

  66. Laurent D, Jullian V, Parenty A, Knibiehler M, Dorin D, Schmitt S, Lozach O, Lebouvier N, Frostin M, Alby F, Maurel S, Doerig C, Meijer L, Sauvain M (2006) Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp. Bioorg Med Chem 14:4477–4482

    Article  PubMed  CAS  Google Scholar 

  67. Desoubzdanne D, Marcourt L, Raux R, Chevalley S, Dorin D, Doerig C, Valentin A, Ausseil F, Debitus C (2008) Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a New Caledonian deep water sponge. J Nat Prod 71:1189–1192

    Article  PubMed  CAS  Google Scholar 

  68. Na M, Meujo DAF, Kevin D, Hamann MT, Anderson M, Hill RT (2008) A new antimalarial polyether from a marine Streptomyces sp. H668. Tetrahedron Lett 49:6282–6285

    Article  PubMed  CAS  Google Scholar 

  69. Wright AD, Lang-Unnasch N (2005) Potential antimalarial lead structures from fungi of marine origin. Planta Med 71:964–966

    Article  PubMed  CAS  Google Scholar 

  70. Arevalo J, Ramirez L, Adaui V et al (2007) Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis 195:1846–1851

    Article  PubMed  CAS  Google Scholar 

  71. Jha TK, Sundar S, Thakur CP et al (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. New Engl J Med 341:1795–1800

    Article  PubMed  CAS  Google Scholar 

  72. Trudel N et al (2008) Intracellular survival of Leishmania species that cause visceral leishmaniasis is significantly reduced by HIV-1 protease inhibitors. J Infect Dis 198:1292–1299

    Article  PubMed  CAS  Google Scholar 

  73. Gupta L, Talwar A, Nishi PS, Gupta S, Chauhan PMS (2007) Synthesis of marine alkaloid: 8,9-dihydrocoscinamide B and its analogues as novel class of antileishmanial agents. Bioorg Med Chem Lett 17:4075–4079

    Article  PubMed  CAS  Google Scholar 

  74. Vik A, Proszenyak A, Vermeersch M, Cos P, Maes L, Gundersen L (2009) Screening of Agelasine D and Analogs for Inhibitory Activity against Pathogenic Protozoa; Identification of Hits for Visceral Leishmaniasis and Chagas Disease. Molecules 14:279–288

    Article  PubMed  CAS  Google Scholar 

  75. Nakao Y, Shiroiwa T, Murayama S, Matsunaga S, Goto Y, Matsumoto Y, Fusetani N (2004) Identification of renieramycin A as an antileishmanial substance in a marine sponge Neopetrosia sp. Mar Drugs 2:55–62

    Article  CAS  Google Scholar 

  76. Balunas MJ, Linington RG, Tidgewell K, Fenner AM, Urena LD, Della Togna G, Kyle DE, Gerwick WH (2010) Dragonamide E, a modified linear lipopeptide from Lyngbya majuscula with antileishmanial activity. J Nat Prod 73:60–66

    Article  PubMed  CAS  Google Scholar 

  77. Sanchez LM, Lopez D, Vesely BA, Della Togna G, Gerwick WH, Kyle DE, Linington RG (2010) Almiramides A-C: discovery and development of a new class of leishmaniasis lead compounds. J Med Chem 53:4187–4197

    Article  PubMed  CAS  Google Scholar 

  78. Gray CA, de Nira SP, Silva L, Pimenta EF, Thiemann OH, Oliva G, Hajdu E, Andersen RJ, Berlinck RGS (2006) Sulfated meroterpenoids from the Brazilian sponge Callyspongia sp. Are inhibitors of the antileishmaniasis target adenosine phosphoribosyl transferase. J Org Chem 71:8685–8690

    Article  PubMed  CAS  Google Scholar 

  79. Gul W, Hammond NL, Yousaf M, Peng J, Holley A, Hamann MT (2007) Chemical transformation and biological studies of marine sesquiterpene (S)-(+)-curcuphenol and its analogs. Biochim Biophys Acta 1770:1513–1519

    Article  PubMed  CAS  Google Scholar 

  80. Savoia D, Avanzini C, Alice T, Callone E, Guella G, Dini F (2004) Antimicrobial activity of euplotin C, the sesquiterpene taxonomic marker from the marine ciliate Euplotes crassus. Antimicrob Agents Chemother 48:3828–3833

    Article  PubMed  CAS  Google Scholar 

  81. Ma WS, Mutka T, Vesley B, Amsler MO, McClintock JB, Amsler CD, Perman JA, Singh MP, Maiese WM, Zaworotko MJ, Kyle DE, Baker BJ (2009) Norselic acids A-E, highly oxidized anti-infective steroids that deter mesograzer predation, from the Antarctic Sponge Crella sp. J Nat Prod 72:1842–1846

    Article  PubMed  CAS  Google Scholar 

  82. Singh N, Kumar R, Gupta S, Dube A, Lakshmi V (2008) Antileishmanial activity in vitro and in vivo of constituents of sea cucumber Actinopyga lecanora. Parasitol Res 103:351–354

    Article  PubMed  Google Scholar 

  83. Compagnone RS, Pina IC, Rangel HR, Dagger F, Suarez AI, Reddy MVR, Faulkner DJ (1998) Antileishmanial cyclic peroxides from the Palauan sponge Plakortis aff. angulospiculatus. Tetrahedron 54:3057–3068

    Article  CAS  Google Scholar 

  84. Lim CW, Lim Y, Youn HD, Park H (2006) Enantiomeric compounds with antileishmanial activities from a sponge, Plakortis sp. Agric Chem Biotechnol 49:21–23

    CAS  Google Scholar 

  85. Lim CW, Kim Y, Jang M, Park J, Park H (2006) Coupling of ent-cyclic peroxide and ircinol A, two biologically active natural marine products. J Fish Sci Technol 9:175–178

    CAS  Google Scholar 

  86. Kossuga MH, Nascimento AM, Reimão JQ, Tempone AG, Taniwaki NN, Veloso K, Ferreira AG, Cavalcanti BC, Pessoa C, Moraes MO, Mayer AMS, Hajdu E, Berlinck RGS (2008) Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. J Nat Prod 71:334–339

    Article  PubMed  CAS  Google Scholar 

  87. Barrett MP, Burchmore RJ, Stich A et al (2003) The trypanosomiases. Lancet 362:1469–1480

    Article  PubMed  Google Scholar 

  88. Burri C, Nkunku S, Merolle A, Smith T, Blum J, Brun R (2000) Efficacy of new, concise schedule for melarsoprol in treatment of sleeping sickness caused by Trypanosoma brucei gambiense: a randomised trial. Lancet 355:1419–1425

    Article  PubMed  CAS  Google Scholar 

  89. El-Sayed NM, Myler PJ, Bartholomeu DC (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  PubMed  CAS  Google Scholar 

  90. Takishima S, Ishiyama A, Iwatsuki M, Otoguro K, Yamada H, Omura S, Kobayashi H, van Soest RWM, Matsunaga S (2009) Merobatzelladines A and B, anti-infective tricyclic guanidines from a marine sponge Monanchora sp. Org Lett 11:2655–2658

    Article  PubMed  CAS  Google Scholar 

  91. Yamada H, Takahashi Y, Kubota T, Fromont J, Ishiyama A, Otoguro K, Yamada H, Omura S, Kobayashi J (2009) Zamamidine C, 3,4-dihydro-6-hydroxy-10,11-epoxymanzamine A, and 3,4-dihydromanzamine J N-oxide, new manzamine alkaloids from sponge Amphimedon sp. Tetrahedron 65:2313–2317

    Article  CAS  Google Scholar 

  92. Simmons TL, Engene N, Urena LD, Romero LI, Ortega-Barria E, Gerwick L, Gerwick WH (2008) Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. J Nat Prod 71:1544–1550

    Article  PubMed  Google Scholar 

  93. Johnson TA, Amagata T, Sashidhara KV, Oliver AG, Tenney K, Matainaho T, Ang KKH, McKerrow JH, Crews P (2009) The aignopsanes, a new class of sesquiterpenes from selected chemotypes of the sponge Cacospongia mycofijiensis. Org Lett 11:1975–1978

    Article  PubMed  CAS  Google Scholar 

  94. Orhan I, Sener B, Kaiser M, Brun R, Tasdemir D (2010) Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8:47–58

    Article  PubMed  CAS  Google Scholar 

  95. Rubio BK, Tenney K, Ang KH, Abdulla M, Arkin M, McKerrow J, Crews P (2009) The marine sponge Diacarnus bismarckensis as a source of peroxiterpene inhibitors of Trypanosoma brucei, the causative agent of sleeping sickness. J Nat Prod 72:218–222

    Article  PubMed  CAS  Google Scholar 

  96. Feng Y, Davis RA, Sykes M, Avery VM, Camp D, Quinn RJ (2010) Antitrypanosomal cyclic polyketide peroxides from the Australian marine sponge Plakortis sp. J Nat Prod 73:716–719

    Article  PubMed  CAS  Google Scholar 

  97. Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002) Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 359:2188–2194

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernesto Fattorusso or Orazio Taglialatela-Scafati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Fattorusso, E., Taglialatela-Scafati, O. (2012). Marine Natural Products Active Against Protozoan Parasites. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_21

Download citation

Publish with us

Policies and ethics