Skip to main content

Marine Natural Products That Target Microtubules

  • Reference work entry
  • First Online:
Handbook of Marine Natural Products

Abstract

This chapter illustrates the large number and variety of microtubule-targeting natural product chemotypes that have been discovered from marine organisms. Microtubules are the biological target of many marine natural products, and antimitotic agents are potent toxins making them highly effective chemical defenses for algae and sessile or slow-moving invertebrates. Marine sponges account for roughly half of the new chemotypes, with the remainder coming from ascidians, soft corals, mollusks, macroalgae, blue-green algae, bacteria, and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 7:730–742

    PubMed  CAS  Google Scholar 

  2. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    PubMed  CAS  Google Scholar 

  3. Kingston DGI (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72:507–515

    PubMed  CAS  Google Scholar 

  4. Altmann K-H (2001) Microtubule-stabilizing agents: a growing class of important anticancer drugs. Curr Opin Chem Biol 5:424–431

    PubMed  CAS  Google Scholar 

  5. Altman KH, Gertsch J (2007) Anticancer drugs from nature - natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 24:327–357

    Google Scholar 

  6. Hamel E (1996) Antimitotic natural products and their interactions with tubulin. Med Res Rev 16:207–231

    PubMed  CAS  Google Scholar 

  7. Kerssemakers JWJ, Munteanu EL, Laan L et al (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712

    PubMed  CAS  Google Scholar 

  8. Rodionov VI, Borisy GG (1997) Microtubule treadmilling in vivo. Science 275:215–218

    PubMed  CAS  Google Scholar 

  9. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    PubMed  CAS  Google Scholar 

  10. Cristofanilli M, Charsangavej C, Hortobagyi GN et al (2002) Angiogenesis modulation in cancer research: novel clinical approaches. Nat Rev Drug Discov 1:415–426

    PubMed  CAS  Google Scholar 

  11. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    PubMed  CAS  Google Scholar 

  12. Roberge M, Cinel B, Anderson HJ et al (2000) Cell-based screen for antimitoic agents and identification of analogues of rhizoxin, eleutherobin, and paclitaxel in natural extracts. Cancer Res 60:5052–5058

    PubMed  CAS  Google Scholar 

  13. Kokoshka JM, Ireland CM, Barrows LR (1996) Cell-based screen for identification of inhibitors of tubulin polymerization. J Nat Prod 59:1179–1182

    PubMed  CAS  Google Scholar 

  14. Meguro S, Namikoshi M, Kobayashi H (2002) A new screening method for antimitotic substances and isolation of glycolipids as stimulators of tubulin polymerization from okinawan sponge Pseudoceratina sp. J Antibiot 55:256–262

    PubMed  CAS  Google Scholar 

  15. Kobayashi H, Namikoshi M, Yoshimoto T et al (1996) A screening method for antimitotic and antifungal substances using conidia of Pyriculavia ovyzae, modification and application to tropical marine fungi. J Antibiot 9:873–879

    Google Scholar 

  16. Uemura D, Takahashi K, Yamamoto T et al (1985) Norhalichondrin A: An antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107:4796–4798

    CAS  Google Scholar 

  17. Hirata Y, Uemura D (1986) Halichondrins – antitumor polyether macrolides from a marine sponge. Pure Appl Chem 58:701–710

    CAS  Google Scholar 

  18. Pettit GR, Tan R, Gao F et al (1993) Isolation and structure of halistatin 1 from the eastern Indian Ocean marine sponge Phakellia carteri. J Org Chem 58:2538–2543

    CAS  Google Scholar 

  19. Pettit GR, Gao F et al (1993) Antineoplastic agents. CCLII. Isolation and structure of halistatin 2 from the Comoros marine sponge Axinella carteri. Gazz Chim Ital 123:371–377

    CAS  Google Scholar 

  20. Pettit GR, Ichihara Y, Wurzel G et al (1995) Isolation and structure of halistatin 3 from the Western Pacific (Chuuk) marine sponge Phakellia sp. J Chem Soc Chem Commun 26(27):383–385

    Google Scholar 

  21. Litaudon M, Hart JB, Blunt JW et al (1994) Isohomohalichondrin B, a new antitumor polyether macrolide from the New Zealand deep-water sponge Lissodendoryx sp. Tetrahedron Lett 35:9435–9438

    CAS  Google Scholar 

  22. Litaudon M, Hickford SJH, Lill RE et al (1997) Antitumor polyether macrolides: New and hemisynthetic halichondrins from the New Zealand deep-water sponge Lissodendoryx sp. J Org Chem 62:1868–1871

    CAS  Google Scholar 

  23. Bai RL, Paull KD, Herald CL et al (1991) Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 266:15882–15889

    PubMed  CAS  Google Scholar 

  24. Aicher TD, Buszek KR, Fang FG et al (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114:3162–3164

    CAS  Google Scholar 

  25. Zheng W, Seletsky BM, Palme MH et al (2004) Macrocyclic ketone analogues of halichondrin B. Bioorg Med Chem Lett 14:5551–5554

    PubMed  CAS  Google Scholar 

  26. Yu MJ, Kishi Y, Littlefield BA (2005) Discovery of E7389, a fully synthetic macrocyclic ketone analog of halichondrin B. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Press, Boca Raton, FL, pp 241–265

    Google Scholar 

  27. Towle MJ, Salvato KA, Budrow J et al (2001) In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61:1013–1021

    PubMed  CAS  Google Scholar 

  28. Jordan MA, Kamath K, Manna T et al (2005) The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther 4:1086–1095

    PubMed  CAS  Google Scholar 

  29. Dabydeen DA, Burnett JC, Bai R et al (2006) Comparison of the activities of the truncated halichondrin B analog NSC 707389 (E7389) with those of the parent compound and a proposed binding site on tubulin. Mol Pharmacol 70:1866–1875

    PubMed  CAS  Google Scholar 

  30. Blum JL, Pruitt B, Fabian CJ et al (2007) Phase II study of eribulin mesylate (E7389) halichondrin B analog in patients with refractory breast cancer. J Clin Oncol (Meeting Abstracts) 25(18):1034

    Google Scholar 

  31. Spira AI, Iannotti NO, Savin MA et al (2007) Phase II study of eribulin mesylate (E7389), a mechanistically novel inhibitor of microtubule dynamics, in patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol (ASCO Meeting Abstracts) 25(18):7546

    Google Scholar 

  32. Pettit GR, Cichacz ZA, Gao F et al (1993) Isolation and structure elucidation of spongistatin 1. J Org Chem 58:1302–1304

    CAS  Google Scholar 

  33. Fusetani N, Shinoda K, Matsunaga S (1993) Cinachyrolide A: a potent cytotoxic macrolide possessing two spiro ketals from marine sponge Cinachyra sp. J Am Chem Soc 115:3977–3981

    CAS  Google Scholar 

  34. Kobayashi M, Aoki S, Sakai H et al (1993) Altohyrtin A, a potent anti-tumor macrolide from the Okinawan marine sponge Hyrtios altum. Tetreahedron Lett 34:2795–2798

    CAS  Google Scholar 

  35. Kobayashi M, Aoki S, Sakai H et al (1993) Altohyrtins B and C and 5-desacetylaltohyrtin A, potent cytotoxic macrolide congeners of altohrytin A, from the Okinawan marine sponge Hyrtios altum. Chem Pharm Bull 41:989–991

    PubMed  CAS  Google Scholar 

  36. Pettit GR, Cichacz ZA, Gao F et al (1993) Isolation and structure of the remarkable human cancer cell growth inhibitors spongistatins 2 and 3 from an Eastern Indian Ocean Spongia sp. J Chem Soc Chem Commun 14:1166–1168

    Google Scholar 

  37. Kobayashi M, Aoki S, Kitagawa I (1994) Absolute stereostructures of altohyrtin A and its congeners, potent cytotoxic macrolides from the Okinawan marine sponge Hyrtios altum. Tetrahedron Lett 35:1234–1246

    Google Scholar 

  38. Kobayashi M, Aoki S, Gato K et al (1996) Marine natural products XXXVIII. Absolute stereostructres of altohrtins A, B, C and 5-desacetylaltohyrtin A, potent cytotoxic macrolides, from the Okinawan marine sponge Hyrtios altum. Chem Pharm Bull 44:2142–2149

    CAS  Google Scholar 

  39. Hayward MM, Roth RM, Duffy KJ (1998) Total synthesis of altohyrtin A (spongistatin 1): part 2. Angew Chem Int Ed 37:190–196

    Google Scholar 

  40. Evans DA, Trotter BW, Côté B et al (1997) Enantioselective synthesis of altohyrtin C (spongistatin 2): fragment assembly and revision of the spongistatin 2 stereochemcial assignment. Angew Chem Int Ed 36:2744–2747

    CAS  Google Scholar 

  41. Pettit GR, Herald CL, Cichacz ZA et al (1993) Isolation and structure of the powerful human cancer cell growth inhibitors spongistatins 4 and 5 from an African Spirastrella spinispirulifera (porifera). J Chem Soc Chem Commun 58:1805–1807

    Google Scholar 

  42. Pettit GR, Herald CL, Cichacz ZA et al (1993) Antineoplastic agents. 293. The exceptional human cancer cell growth inhibitors spongistatins 6 and 7. Nat Prod Lett 3:239–244

    CAS  Google Scholar 

  43. Pettit, GR, Cichacz ZA, Herald, CL et al (1994) Antineoplastic agents 300. Isolation and structure of the rare human cancer inhibitory macrocyclic lactones spongistatins 8 and 9. J Chem Soc Chem Commun 1605–1606

    Google Scholar 

  44. Bai R, Taylor GF, Cichacz ZA et al (1995) The spongistatins, potently cytotoxic inhibitors of tubulin polymerization, bind in a distinct region of the Vinca domain. Biochemistry 34:9714–9721

    PubMed  CAS  Google Scholar 

  45. Pettit RK, McAllister SC, Pettit GR et al (1998) A broad spectrum antifungal from the marine sponge Hyrtios erecta. Int J Antimicrob Agents 9:147–152

    CAS  Google Scholar 

  46. Smith AB, Sfouggatakis C, Risatti CA et al (2009) Spongipyran synthetic studies. Evolution of a scalable total synthesis of (+)-spongistatin 1. Tetrahedron 65:6489–6509

    PubMed  CAS  Google Scholar 

  47. Namikoshi M, Kobayashi H, Yoshimoto T et al (1997) Phomopsidin, a new inhibitor of microtubule assembly produced by Phomopsis sp isolated from coral reef in Pohnpei. J Antibiot (Tokyo) 50:890–892

    CAS  Google Scholar 

  48. Kobayashi H, Meguro S, Yoshimoto T et al (2003) Absolute structure, biosynthesis, and anti-microtubule activity of phomopsidin, isolated from a marine-derived fungus Phomopsis sp. Tetrahedron 59:455–459

    CAS  Google Scholar 

  49. Sullivan AS, Prasad V, Roach MC et al (1990) Interaction of rhizoxin with bovine brain tubulin. Cancer Res 50:4277–4280

    PubMed  CAS  Google Scholar 

  50. Scherlach K, Partida-Martinez LP, Dahse H-M et al (2006) Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus. J Am Chem Soc 128:11529–11536

    PubMed  CAS  Google Scholar 

  51. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    PubMed  CAS  Google Scholar 

  52. McLeod HL, Murray LS, Wanders J et al (1996) Multicentre phase II pharmacological evaluation of rhizoxin. Br J Cancer 74:1944–1948

    PubMed  CAS  Google Scholar 

  53. Pettit GR, Kamano Y, Herald CL et al (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 109:6883–6885

    CAS  Google Scholar 

  54. Pettit GR, Singh SB, Hogan F et al (1989) The absolute configuration and synthesis of natural (−)-dolastatin 10. J Am Chem Soc 111:5463–5465

    CAS  Google Scholar 

  55. Luesch H, Moore RE, Paul VJ et al (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    PubMed  CAS  Google Scholar 

  56. Bai R, Pettit GR, Hamel E (1990) Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Biochem Pharmacol 39:1941–1949

    PubMed  CAS  Google Scholar 

  57. Bai R, Taylor GF, Schmidt JM et al (1995) Interaction of dolastatin 10 with tubulin: induction of aggregation and binding and dissociation reactions. Mol Pharmacol 47:965–976

    PubMed  CAS  Google Scholar 

  58. Pitot HC, McElroy EA Jr et al (1999) Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res 5:525–531

    PubMed  CAS  Google Scholar 

  59. Vaishampayan U, Glode M, Du W et al (2000) Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin Cancer Res 6:4205–4208

    PubMed  CAS  Google Scholar 

  60. Madden T, Tran HT, Beck D et al (2000) Novel marine-derived anticancer agents: A phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 37618) in patients with advanced solid tumors. Clin Cancer Res 6:1293–1301

    PubMed  CAS  Google Scholar 

  61. Saad ED, Kraut EH, Hoff PM et al (2002) Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer. Am J Clin Oncol (CCT) 25:451–453

    Google Scholar 

  62. Miyazaki K, Kobayashi M, Natsume T et al (1995) Synthesis and antitumor activity of novel dolastatin 10 analogs. Chem Pharm Bull 43:1706–1718

    PubMed  CAS  Google Scholar 

  63. Kobayashi M, Natsume T, Tamaoki S et al (1997) Antitumor activity of TZT-1027, a novel dolastatin 10 derivative. Jpn J Cancer Res 88:316–327

    PubMed  CAS  Google Scholar 

  64. Watanabe J, Natsume Kobayashi M (2006) Antivascular effects of TZT-1027 (Soblidotin) on murine colon26 adenocarcinoma. Cancer Sci 97:1410–1416

    PubMed  CAS  Google Scholar 

  65. Otani M, Natsume T, Watanabe J et al (2000) TZT-1027, an antimicrotubule agent, attacks tumor vasculature and induces tumor cell death. Jpn J Cancer Res 91:837–844

    PubMed  CAS  Google Scholar 

  66. Schöffski P, Thate B, Beutel G et al (2004) Phase I and pharmacokinetic study of TZT-1027, a novel synthetic dolastatin 10 derivatives, administered as a 1-hour intravenous infusion every 3 weeks in patients with advanced refractory cancer. Ann Oncol 15:671–679

    PubMed  Google Scholar 

  67. JongeMJAd GA, Planting AST et al (2005) Phase I and pharmacokinetic study of the dolastatin 10 analogue TZT-1027, given on days 1 and 8 of a 3-week cycle in patients with advanced solid tumors. Clin Cancer Res 11:3806–3813

    Google Scholar 

  68. Patel S, Keohan ML, Saif MW et al (2006) Phase II study of intravenous TZT-1027 in patients with advanced or metastatic soft-tissue sarcomas with prior exposure to anthracycline-based chemotherapy. Cancer 107:2881–2887

    PubMed  CAS  Google Scholar 

  69. Pettit GR, Kamano Y, Dufresne C et al (1989) Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J Org Chem 54:6005–6006

    CAS  Google Scholar 

  70. Pettit GR, Herald DL, Singh SB et al (1991) Antineoplastic agents. 220. Synthesis of natural (−)-dolastatin15. J Am Chem Soc 113:6692–6693

    CAS  Google Scholar 

  71. Bai R, Friedman S, Pettit GR et al (1992) Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia. Biochem Pharmacol 43:2637–2645

    PubMed  CAS  Google Scholar 

  72. Cruz-Monserrate Z, Mullaney JT, Harran P et al (2003) Dolastatin 15 binds in the vinca domain of tubulin as demonstrated by Hummel-Dreyer chromatography. Eur J Biochem 270:3822–3828

    PubMed  CAS  Google Scholar 

  73. Arruda MD, Cocchiaro CA, Nelson CM et al (1995) LU103793 (NSC D-669356): a synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res 55:3085–3092

    PubMed  Google Scholar 

  74. Cunningham C, Appleman LJ, Kirvan-Visovatti M et al (2005) Phase I and pharmacokinetic study of the dolastatin-15 analogue tasidotin (ILX651) administered intravernously on days 1, 3, and 5 every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 11:7825–7833

    PubMed  CAS  Google Scholar 

  75. Jordan MA, Walker D, Arruda MD et al (1998) Suppression of microtubule dynamics by binding of cemadotin to tubulin: possible mechanism for its antitumor action. Biochemistry 37:17571–17578

    PubMed  CAS  Google Scholar 

  76. Ray A, Okouneva T, Manna T et al (2007) Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate. Cancer Res 67:3767–3776

    PubMed  CAS  Google Scholar 

  77. Marks RS, Graham DL, Sloan JA et al (2003) A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer. Am J Clin Oncol (CCT) 26:336–337

    CAS  Google Scholar 

  78. Mross K, Berdel WE, Fiebig HH et al (1998) Clinical and pharmacologic phase I study of cemadotin-HCl (LU103793), a novel antimitotic peptide, given as 24-hour infusion in patients with advanced cancer. Ann Oncol 9:1323–1330

    PubMed  CAS  Google Scholar 

  79. Mita AC, Hammond LA, Bonate PL et al (2006) Phase I and pharmacokinetic study of tasidotin hydrochloride (ILX651), a third-generaton dolastatin-15 analogue, administered weekly for 3 weeks every 28 days, in patients with advanced solid tumors. Clin Cancer Res 11:5207–5215

    Google Scholar 

  80. Simmons TL, McPhail KL, Ortega-Barría E et al (2006) Belamide A, a new antimitotic tetrapeptide from a Panamanian marine cynobacterium. Tetrahedron Lett 47:3387–3390

    CAS  Google Scholar 

  81. Kobayashi M, Aoki S, Ohyabu N et al (1994) Arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine sponge Dysidea arenaria. Tetrahedron Lett 35:7969–7972

    CAS  Google Scholar 

  82. Kobayashi M, Kurosu M, Ohyabu N et al (1994) The absolute strereostructure of arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine sponge Dysidea arenaria. Chem Pharm Bull 42:2196–2198

    CAS  Google Scholar 

  83. Golakoti T, Ohtani I, Patterson GML et al (1994) Total structures of cryptophycins. Potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116:4729–4737

    Google Scholar 

  84. Barrow RA, Hemscheidt T, Liang J et al (1995) Total synthesis of cryptophycins. revision of the structures of cryptophycins A and C. J Am Chem Soc 117:2479–2490

    CAS  Google Scholar 

  85. Schwartz RE, Hirsch CF, Sesin DF et al (1990) Pharmaceuticals from cultured algae. J Ind Microbiol Biotechnol 5:113–124

    CAS  Google Scholar 

  86. Golakoti T, Ogino J, Heltzel CE (1995) Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs from Nostoc sp. strain GSV 224. J Am Chem Soc 117:12030–12049

    CAS  Google Scholar 

  87. Chaganty S, Golakoti T, Heltzel C et al (2004) Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp. GSV 224. J Nat Prod 67:1403–1406

    PubMed  CAS  Google Scholar 

  88. Kerksiek K, Mejillano MR, Schwartz RE et al (1995) Interaction of cryptophycin 1 with tubulin and microtubules. FEBS Lett 377:59–61

    PubMed  CAS  Google Scholar 

  89. Bai R, Schwartz RE, Kepler JA et al (1996) Characterization of the interaction of cryptophycin 1 with tubulin: Binding in the vinca domain, competitive inhibition of dolastatin 10 binding, and an unusual aggregation reaction. Cancer Res 56:4398–4406

    PubMed  CAS  Google Scholar 

  90. Panda D, Himes RH, Moore RE et al (1997) Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. Biochemistry 36:12948–12953

    PubMed  CAS  Google Scholar 

  91. Stevenson JP, Sun W, Gallagher M (2002) Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days. Clin Cancer Res 8:2524–2529

    PubMed  CAS  Google Scholar 

  92. Sessa C, Weigang-Kohler K, Pagani O et al (2002) Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule. Eur J Cancer 38:2388–2396

    PubMed  CAS  Google Scholar 

  93. Talpir R, Benayahu Y, Kashman Y (1994) Hemiasterlin and geodiamolide TA; Two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett 35:4453–4456

    CAS  Google Scholar 

  94. Crews P, Farias JJ, Emrich R et al (1994) Milnamide A, an unusual cytotoxic tripeptide from the marine sponge Aulettacf. constricta. J Org Chem 59:2932–2934

    CAS  Google Scholar 

  95. Coleman JE, de Silva ED, Kong F et al (1995) Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron 51:10653–10662

    CAS  Google Scholar 

  96. Coleman JE, Patrick BO, Andersen RJ et al (1996) Hemiasterlin methyl ester. Acta Crystallogr C52:1525–1527

    CAS  Google Scholar 

  97. Andersen RJ, Coleman JE, Piers E et al (1997) Total synthesis of (−)-hemiasterlin, a structurally novel tripeptide that exhibits potent cytotoxic activity. Tetrahedron Lett 38:317–320

    CAS  Google Scholar 

  98. Gamble WR, Durso NA, Fuller RW et al (1999) Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphononchalina spp. sponges. Bioorg Med Chem 7:1611–1615

    PubMed  CAS  Google Scholar 

  99. Chevallier C, Richardson AD, Edler MC et al (2003) A new cytotoxic and tubulin-interactive milnamide derivative from a marine sponge Cymbastela sp. Org Lett 5:3737–3739

    PubMed  CAS  Google Scholar 

  100. Sonnenschein RN, Farias JJ, Tenney K et al (2004) A further study of the cytotoxic constituents of a milnamide-producing sponge. Org Lett 6:779–782

    PubMed  CAS  Google Scholar 

  101. Liu C, Masuno MN, Macmillan JB et al (2004) Enantioselective total synthesis of (+)-milnamide A and evidence of its autoxidation to (+)-milnamide D. Angew Chem Int Ed Engl 43:5951–5954

    PubMed  CAS  Google Scholar 

  102. Anderson HJ, Coleman JE, Andersen RJ et al (1997) Cytotoxic peptides hemiasterlin, hemiasterlin A, and hemiasterlin B include mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol 39:223–226

    PubMed  CAS  Google Scholar 

  103. Bai R, Durso NA, Sackett DL et al (1999) Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry 38:14302–14310

    PubMed  CAS  Google Scholar 

  104. Boukari H, Nossal R, Sackett DL (2003) Stability of drug-induced tubulin rings by fluorescence correlation spectroscopy. Biochemistry 42:1292–1300

    PubMed  CAS  Google Scholar 

  105. Nieman JA, Coleman JE, Wallace DJ et al (2003) Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues. J Nat Prod 66:183–199

    PubMed  CAS  Google Scholar 

  106. Ratain MJ et al (2003) Phase 1 and pharmacological study of HTI-286, a novel antimicrotubule agent: correlation of neutropenia with time above a threshold serum concentration. Proc Am Soc Clin Oncol 22:516

    Google Scholar 

  107. Andersen RJ, Roberge M (2005) HTI-286, a synthetic analogue of the antimototic natural product hemiasterlin. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Press, Boca Raton, pp 267–280

    Google Scholar 

  108. Loganzo F, Discafani CM, Annable T et al (2003) HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 63:1838–1845

    PubMed  CAS  Google Scholar 

  109. Rav M, Zask A, Rush TS III (2005) Structure-based identification of the binding site for the hemiasterlin analogue HTI-286 on tubulin. Biochemistry 44:15871–15879

    Google Scholar 

  110. Milto MJ, Williamson RT, Koehn FE (2006) Mapping the bound conformation and protein interactions of microtubule destabilizing peptides by STD-NMR spectroscopy. Bioorg Med Chem Lett 16:4279–4282

    Google Scholar 

  111. Nunes M, Kaplan J, Wooters J et al (2005) Two photoaffinity analogues of the tripeptide, hemiasterlin, exclusively label α-tubulin. Biochemistry 44:6844–6857

    PubMed  CAS  Google Scholar 

  112. Lo M-C, Aulabaugh A, Krishnamurthy G et al (2004) Probing the interaction of HTI-286 with tubulin using a stilbene analogue. J Am Chem Soc 126:9898–9899

    PubMed  CAS  Google Scholar 

  113. Yamashita A, Norton EB, Kaplan JA et al (2004) Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment. Bioorg Med Chem Lett 14:5317–5322

    PubMed  CAS  Google Scholar 

  114. Hadaschik BA, Ettinger S, Sowery RD et al (2008) Targeting prostate cancer with HTI-286, a synthetic analog of the marine sponge product hemiasterlin. Int J Cancer 122:2368–2376

    PubMed  CAS  Google Scholar 

  115. Hadaschik BA, Adomat H, Fazli L et al (2008) Intravesical chemotherapy of high-grade bladder cancer with HTI-286, a synthetic analogue of the marine sponge product hemiasterlin. Clin Cancer Res 14:1510–1518

    PubMed  CAS  Google Scholar 

  116. Fernandez AM, He H, McDonald LA et al (1998) Structural studies of marine pep tides. Pure Appl Chem 70:2130

    Google Scholar 

  117. Edler MC, Fernandez AM, Lassota P et al (2002) Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochem Pharmacol 63:707–715

    PubMed  CAS  Google Scholar 

  118. Fenical W, Jensen PR, Cheng XC (1999) Halimide, a cytotoxic marine natural product, derivatives thereof, and therapeutic use in inhibition of proliferation. PCT Int. Appl. WO 9948889

    Google Scholar 

  119. Nicholson B, Lloyd GK, Miller BR et al (2006) NPI-2358 is a tubulin-depolymerizing agent: in vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 17:25–31

    PubMed  CAS  Google Scholar 

  120. Gerwick WH, Proteau PJ, Nagel DG et al (1994) Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 59:1243–1245

    CAS  Google Scholar 

  121. Yoo H-D, Gerwick WH (1995) Curacins B and C, new antimitotic natural products from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 58:1961–1965

    CAS  Google Scholar 

  122. Márquez B, Verdier-Pinard P, Hamel E et al (1998) Curacin D, an antimitoic agent from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 49:2387–2389

    PubMed  Google Scholar 

  123. Nagle DG, Geralds RS, Yoo H-D et al (1995) Absolute configuration of curacin A, a novel antimitotic agent from the tropical marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett 36:1189–1192

    CAS  Google Scholar 

  124. White JD, Kim TS, Nambu M (1995) Synthesis of curacin A: a powerful antimitoic from the cyanobacterium Lyngbya majuscula. J Am Chem Soc 117:5612–5613

    CAS  Google Scholar 

  125. Chang Z, Sitachitta N, Rossi JV et al (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367

    PubMed  CAS  Google Scholar 

  126. Gu L, Wang B, Kulkarni A et al (2009) Metamorphic enzyme assembly in polyketide diversification. Nature 459:731–735

    PubMed  CAS  Google Scholar 

  127. Gu L, Wang B, Kulkarni A et al (2009) Polyketide decarboxylative chain termination preceded byO-sulfonation in curacin A biosynthesis. J Am Chem Soc 131:16033–16035

    PubMed  CAS  Google Scholar 

  128. Ludueña RF, Prasad V, Roach MC et al (1997) Interaction of the cyanobacterial thiazoline-containing lipid curacin A with bovine brain tubulin. Drug Develop Res 40:223–229

    Google Scholar 

  129. Verdier_Pinard P, Lai J-Y, Yoo H-D et al (1997) Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Mol Pharmacol 53:62–76

    Google Scholar 

  130. Wipf P, Reeves JT, Day BW (2004) Chemistry and biology of curacin A. Curr Pharm Des 10:1417–1437

    PubMed  CAS  Google Scholar 

  131. Lindquist N, Fenical W, Van Duyne GD et al (1991) Isolation and strcutre elucidation of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazonia chinensis. J Am Chem Soc 113:2303–2304

    CAS  Google Scholar 

  132. Li J, Jeong S, Esser L et al (2001) Total synthesis of nominal diazonamides – Part 1: Convergent preparation of the structure proposed for (−)-diazonamide A. Angew Chem Int Ed Engl 40:4765–4770

    PubMed  CAS  Google Scholar 

  133. Li J, Burgett AWG, Esser L et al (2001) Total synthesis of nominal diazonamides – Part 2: On the true structure and origin of natural isolates. Angew Chem Int Ed Engl 40:4770–4773

    PubMed  CAS  Google Scholar 

  134. Nicolaou KC, Chen DYK, Huang X et al (2004) Chemistry and biology of diazonamide A: first total synthesis and confirmation of the true structure. J Am Chem Soc 126:12888–12896

    PubMed  CAS  Google Scholar 

  135. Fernández R, Martín MJ, Rodríguez-Acebes R et al (2008) Diazonamides C-E, new cytotoxic metabolites from the ascidian Diazonia sp. Tetrahedron Lett 49:2283–2285

    Google Scholar 

  136. Cruz-Monserarate Z, Vervoort HC, Bai R et al (2003) Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol Pharmacol 63:1273–1280

    Google Scholar 

  137. Williams NS, Burgett AWG, Atkins AS et al (2007) Therapeutic anticancer efficacy of a synthetic diazonamide analog in the absence of overt toxicity. Proc Natl Acad Sci 104:2074–2079

    PubMed  CAS  Google Scholar 

  138. Gerwick WH, Fenical W, Fritsch N et al (1979) Stypotriol and stypolidone; ichthyotoxins of mixed biosynthesis from the marine alga Stypopodium zonale. Tetrahedron Lett 20:145–148

    Google Scholar 

  139. White SJ, Jacobs RS (1983) Effect of stypoldione on cell cycle progression, DNA and protein synthesis, and cell division in cultured sea urchin embryos. Mol Pharm 24:500–508

    CAS  Google Scholar 

  140. O’Brien ET, Asai J, Jacobs RS, Wilson L (1988) Selective inhibition of cytokinesis in sea urchin embryos by low concentrations of stypoldione, a marine natural product that reacts with sulfhydryl groups. Mol Pharm 35:635–642

    Google Scholar 

  141. Depix MS, Martínez J, Santivaňez F et al (1998) The comound 14-keto-stypodiol diacetate from the algae Stypopodium flabelliforme inbibits microtubules and cell proliferation in DU-145 human prostatic cells. Mol Cell Biochem 187:191–199

    PubMed  CAS  Google Scholar 

  142. Simon-Levert A, Arrault A, Bontemps-Subielos N et al (2005) Meroterpenes from the ascidian Aplidium aff. densum. J Nat Prod 68:1412–1415

    PubMed  CAS  Google Scholar 

  143. Simon-Levert A, Aze A, Bontemps-Subielos N et al (2007) Antimitotic activity of methoxyconidiol, a meroterpene isolated from an ascidian. Chem Biol Interact 168:106–116

    PubMed  CAS  Google Scholar 

  144. Gunasekera SP, Gunasekera M, Longley RE (1990) Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 55: 4912–4915; ibid (1991) 56: 1346

    Google Scholar 

  145. Nerenberg JB, Hung DT, Somers PK et al (1993) Total synthesis of the immunosuppressive agent (−) discodermolide. J Am Chem Soc 115:12621–12622

    CAS  Google Scholar 

  146. Hung DT, Nerenberg JB, Schreiber SL (1994) Distinct binding and cellular properties of synthetic (+)- and (−)-discodermolides. Chem Biol 1:67–71

    PubMed  CAS  Google Scholar 

  147. Gunasekera SP, Paul GK, Longley RE et al (2002) Five new discodermolide analogues from the marine sponge Discodermia species. J Nat Prod 65:1643–1648

    PubMed  CAS  Google Scholar 

  148. ter Harr E, Kowalski RJ, Hamel E et al (1996) Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35:243–250

    Google Scholar 

  149. Kowalski RJ, Giannakakou P, Gunasekera SP et al (1997) The microtubule-stabilizing agent discodermolide competitivelt inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol Pharmacol 52:613–622

    PubMed  CAS  Google Scholar 

  150. Mickel SJ, Niederer D, Daeffler R et al (2004) Large scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 5: linkage of fragments C1-6 and C7-24 and finale. Org Proc Res Dev 8:122–130

    CAS  Google Scholar 

  151. Mita A, Lockhart AC, Chen T-L et al (2004) A phase I pharmacokinetic (PK) trial of XAA296A (discodermolide) administered every 3 wks to adult patients with advanced solid malignancies. J Clin Oncol 22(14S):2025

    Google Scholar 

  152. Fan Y, Schreiber EM, Day BW (2009) Human liver microsomal metabolism of (+)-discodermolide. J Nat Prod 72:1748–1754

    PubMed  CAS  Google Scholar 

  153. Shaw SS (2008) The structure activity relationship of discodermolide analogues. Mini Rev Med Chem 8:276–284

    PubMed  CAS  Google Scholar 

  154. West LM, Northcote PT, Battershill CN (2000) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 65:445–449

    PubMed  CAS  Google Scholar 

  155. Liao X, Wu Y, De Brabander JK (2003) Total synthesis and absolute configuration of the novel microtubule-stabilizing agent peloruside A. Angew Chem Int Ed 42:1648–1652

    CAS  Google Scholar 

  156. Hood KA, West LM, Rouwé B et al (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res 62:3356–3360

    PubMed  CAS  Google Scholar 

  157. Gaitanos TN, Buey RM, Díaz RM et al (2004) Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 64:5063–5067

    PubMed  CAS  Google Scholar 

  158. Hamel E, Day BW, Miller JH et al (2006) Synergistic effects of peloruside and laulimalide with taxoid site drugs, but not each other, on tubulin assembly. Mol Pharmacol 70:1555–1564

    PubMed  CAS  Google Scholar 

  159. Wilmes A, Bargh K, Kelly C et al (2007) Peloruside A synergizes with other microtubule stabilizing agents in cultured cancer cell lines. Mol Pharm 4:269–280

    PubMed  CAS  Google Scholar 

  160. Page MJ, Northcote PT, Webb VL et al (2005) Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycale hentscheli (Demospongiae: Poecilosclerida). Aquaculture 250:256–269

    CAS  Google Scholar 

  161. Evans DA, Welch DS, Speed AWH et al (2009) An aldol-based synthesis of (+)-pleoruside A, a potent microtubule-stabilizing agent. J Am Chem Soc 131:3840–3841

    PubMed  CAS  Google Scholar 

  162. Quiñoà E, Kakou Y, Crews P (1988) Fijianolides, polyketide heterocycles from a marine sponge. J Org Chem 53:3642–3644

    Google Scholar 

  163. Corley DG, Herb R, Moore RE et al (1988) Laulimalides: new potent cytotoxic macrolides from a marine sponge and a nudibranch predator. J Org Chem 53:3644–3646

    CAS  Google Scholar 

  164. Sanders ML, van Soest RWM (1996) A raised classification of Spongia mycofijiensis. Biologie 66:117–122, Suppl

    Google Scholar 

  165. Jefford CW, Bernardinelli G, Tanaka J et al (1996) Structures and absolute configurations of the marine toxins, latrunculin A and laulimalide. Tetrahedron Lett 37:159–162

    CAS  Google Scholar 

  166. Tanaka J, Higa T, Bernardinelli G et al (1996) New cytotoxic macrolides from the sponge Fasciospongia rimosa. Chem Lett 25:255–256

    Google Scholar 

  167. Mooberrry SL, Tuen G, Hernandez AH et al (1999) Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 59:653–660

    Google Scholar 

  168. Pryor DE, O’Brate AO, Bilcer G et al (2002) The microtubule stabilizing agent laulimalide does not bind to the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 41:9109–9115

    PubMed  CAS  Google Scholar 

  169. Gapud EJ, Bai R, Ghosh AK et al (2004) Laulimalide and paclitaxel: comparison of their effects on tubulin assembly and their synergistic action when present simultaneously. Mol Pharmacol 66:113–121

    PubMed  CAS  Google Scholar 

  170. Jphnson TA, Tenney K, Cichewicz RH et al (2007) Sponge-derived fijianolide class: further evaluation of their structural and cytotoxic properties. J Med Chem 50:3795–3803

    Google Scholar 

  171. Ghosh AK, Wang Y (2000) Total synthesis of (−) laulimalide. J Am Chem Soc 122:11027–11028

    CAS  Google Scholar 

  172. Paterson I, CeSavi C, Tudge M (2001) Total synthesis of the mirotubule-stabilizing agent (−)-laulimalide. Org Lett 3:3149–3152

    PubMed  CAS  Google Scholar 

  173. Liu J, Towle MJ, Cheng H et al (2007) In vitro and in vivo anticancer activities of synthetic (−)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res 27:1509–1518

    PubMed  CAS  Google Scholar 

  174. Pettit GR, Cichacz ZA, Gao F et al (1994) Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J Chem Soc Chem Commun 9:1111–1112

    Google Scholar 

  175. Isbruker RA, Cummins J, Pomponi SA et al (2003) Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine origin. Biochem Pharmacol 66:75–82

    Google Scholar 

  176. Paterson I, Britton R, Delgado O et al (2004) Stereochemical determination of dictyostatin, a novel microtubule-stabilizing macrolide from the marine sponge Corallistidae sp. Chem Commun 6:632–633

    Google Scholar 

  177. Paterson I, Britton R, Delgado O et al (2004) Total synthesis and configurational assignment of (−)-disctyostatin, a microtubule-stabilizing macrolide of marine sponge origin. Angew Chem Int Ed 43:4629–4633

    CAS  Google Scholar 

  178. Madiraju C, Edler MC, Hamel E et al (2005) Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 44:15053–15063

    PubMed  CAS  Google Scholar 

  179. Tanaka J, Higa T (1996) Zampanolide, a new cytotxic macrolide from a marine sponge. Tetrahedron Lett 37:5535–5538

    CAS  Google Scholar 

  180. Smith AB, Safonov IG, Corbett RM (2001) Total synthesis of (+)-zampanolide. J Am Chem Soc 123:12426–12427

    PubMed  CAS  Google Scholar 

  181. Field JJ, Singh AJ, Kanakkanthara A et al (2009) Microtubule-stabilizing activity of zampanolide, a potent macrolide isolated from the Tongan marine sponge Cacospongia mycofijiensis. J Med Chem 52:7328–7332

    PubMed  CAS  Google Scholar 

  182. Manzo E, van Soest R, Matainaho L et al (2003) Certamines A and B, antimitoic heterocyclic alkaloids isolated from the marine sponge Pseudoceratina sp. collected in Papua New Guinea. Org Lett 5:4591–4594

    PubMed  CAS  Google Scholar 

  183. Nodwell M, Riffell JL, Roberge M et al (2008) Synthesis of antimitoic analogs of the microtubule stabilizing sponge alkaloid ceratamine A. Org Lett 10:1051–1054

    PubMed  CAS  Google Scholar 

  184. Nodwell M, Pereira A, Riffell JL et al (2009) Synthetic approaches to the microtubule-stabilizing sponge alkaloid ceratamine A and desbromo analogues. J Org Chem 74:995–1006

    PubMed  CAS  Google Scholar 

  185. Coleman RS, Campbell EL, Carper DJ (2009) A direct and efficient total synthesis of the tubulin-binding agents ceratamine A and B; use of IBX for a remarkable heterocyclic dehydrogenation. Org Lett 11:2133–2136

    PubMed  CAS  Google Scholar 

  186. Karjala G, Chan Q, Manzo E et al (2005) Ceratamines, structurally simple microtubule-stabilizing antimitotic agents with unusual cellular effects. Cancer Res 65:3040–3043

    PubMed  CAS  Google Scholar 

  187. Williams DE, Sturgeon CM, Roberge M et al (2007) Nigricanosides A and B, antimitoic glycolipids isolated from the green alga Avrainvillea nigricans collected in Dominica. J Am Chem Soc 129:5822–5823

    PubMed  CAS  Google Scholar 

  188. Espindola APDM, Crouch R, DeBergh JR et al (2009) Deconvolution of complex NMR spectra in small molecules by multi frequency homonuclear decoupling (MDEC). J Am Chem Soc 131:15994–15995

    PubMed  CAS  Google Scholar 

  189. Lindel T, Jensen PR, Fenical W et al (1997) Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. J Am Chem Soc 119:8744–8745

    CAS  Google Scholar 

  190. D’Ambrosio M, Guerriero A, Pietra F (1987) Sarcodictyin A and sarcodictyin B, novel diterpenoidic alcohols esterified by (E)-N(1)-methylurocanic acid. Isolation from the Mediterranean stolonifer Sarcodictyon roseum. Helv Chim Acta 70:2019–2027

    Google Scholar 

  191. D’Ambrosio M, Guerriero A, Pietra F (1988) Isolation from the Mediterranean stoloniferan coral Sarcodictyon roseum of sarcodictyin C, D, E, and F, novel diterpenoidic alcohols esterified by (E)- or (Z)-N(1)-methylurocanic acid. Failure of the carbon-skeleton type as a classification criterion. Helv Chim Acta 71:964–976

    Google Scholar 

  192. Ketzinel S, Rudi A, Schleyer M et al (1996) Sarcodictyin A and two novel diterpenoid glycosides, Eleuthosides A and B, from the soft coral Eleutherobia aurea. J Nat Prod 59:873–875

    CAS  Google Scholar 

  193. Cinel B, Roberge M, Behrisch H et al (2000) Antimitoic diterpenes from Erythropodium caribaeorum test pharmacophore models for microtubule stabilization. Org Lett 2:257–260

    PubMed  CAS  Google Scholar 

  194. Britton R, Roberge M, Berisch H et al (2001) Antimitotic diterpenoids from erythropodium caribaeorum: isolation artifacts and putative biosynthetic intermediates. Tetrahedron Lett 42:2953–2956

    CAS  Google Scholar 

  195. Taglialatela-Scafati O, DeoJangra U, Campbell M et al (2002) Diterpenoids from cultured Erythropodium caribaeorum. Org Lett 4:4085–4088

    PubMed  CAS  Google Scholar 

  196. Cinel B, Patrick BO, Roberge M et al (2000) Solid-state and solution conformations of eleutherobin obtained from X-ray diffraction analysis and solution NOE data. Tetrahedron Lett 41:2811–2815

    CAS  Google Scholar 

  197. Britton R, de Silva ED, Bigg CM et al (2001) Synthetic tranmsformations of eleutherobin reveal new features of its microtubule-stabilizing pharmacophore. J Am Chem Soc 123:8632–8633

    PubMed  CAS  Google Scholar 

  198. Nicolaou KC, Xu JY, Kim S et al (1997) Synthesis of the tricyclic core of eleutherobin and sarcodictyins and total synthesis of sarcodictyin A. J Am Chem Soc 119:11353–11354

    CAS  Google Scholar 

  199. Nicolaou KC, van Delft F, Ohshima T et al (1997) Total synthesis of eleutherobin. Angew Chem Int Ed 36:2520–2524

    CAS  Google Scholar 

  200. Nicolaou KC, Pfefferkorn J, Xu J et al (1999) Total synthesis and chemical biology of the sarcodictyins. Chem Pharm Bull 47:1199–1213

    PubMed  CAS  Google Scholar 

  201. Chen XT, Zhou B, Bhattacharya SK et al (1998) The total synthesis of eleutherobin: a surprise ending. Angew Chem Int Ed 37:789–792

    CAS  Google Scholar 

  202. Ojima I, Chakravarty S, Inoue T et al (1999) A common pharmacophore for cytotxic natural products that stabilize microtubules. Proc Natl Acad Sci 96:4256–4261

    PubMed  CAS  Google Scholar 

  203. Long BH, Carboni JM, Wasserman AJ et al (1998) Eleutherobin, a novel cytotxic agent that induces tubulin polymerization, is similar to paclitaxel. Cancer Res 58:1111–1115

    PubMed  CAS  Google Scholar 

  204. Hamel E, Sackett DL, Vourloumis D et al (1999) The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding to the taxoid polymer site. Biochemistry 38:5490–5498

    PubMed  CAS  Google Scholar 

  205. Doolittle RF (1992) Reconstructing history with amino acid sequences. Protein Sci 1:191–200

    PubMed  CAS  Google Scholar 

  206. Li JY, Wu CF (2005) New symbiotic hypothesis on the origin of eukaryotic flagella. Naturwiss 92:305–309

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Andersen, R.J., Li, D., Nodwell, M., Roberge, M., Strangman, W., Williams, D.E. (2012). Marine Natural Products That Target Microtubules. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_20

Download citation

Publish with us

Policies and ethics