Skip to main content

The Chemistry of Marine Algae and Cyanobacteria

  • Reference work entry
  • First Online:

Abstract

This chapter reviews the major metabolic themes that are characteristic of the prominent groups of marine algae and cyanobacteria. The taxonomic organization of the chapter facilitates an appreciation of the uniqueness of each of these groups in their capacity to elaborate specific classes of secondary metabolites. For each compound discussed, which are chosen as representatives of chemical themes, a brief story is presented which describes the natural history of the organism, the isolation of the natural product, its structure elucidation, and as appropriate, the pharmacology, chemical ecology, and biosynthesis of the isolated metabolite. Many unanswered questions remain in understanding these diverse algal chemistries, and numerous areas for future exploration are suggested throughout the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol 52:199–214

    CAS  Google Scholar 

  2. Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    PubMed  CAS  Google Scholar 

  3. Tan LT (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 22:659–676

    CAS  Google Scholar 

  4. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    PubMed  CAS  Google Scholar 

  5. Bold HC, Wynne MJ (1978) Introduction to the algae; structure and reproduction. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  6. Engene N, Coates RC, Gerwick WH (2010) 16S rRNA Gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycology 46:591–601

    CAS  Google Scholar 

  7. Castenholz RW, Rippka R, Herdman M (2001) Phylum BX cyanobacteria. In: Garrity GM, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, Vol 1. Springer, New York

    Google Scholar 

  8. Erwin PM, Thacker RW (2008) Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser 362:139–147

    CAS  Google Scholar 

  9. MarinLit Database. Department of Chemistry, University of Canterbury. http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml. Accessed 17 Nov 2011

  10. Ishida T, Watanabe MM, Sugiyama J, Yokota A (2001) Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 201:79–82

    PubMed  CAS  Google Scholar 

  11. Tidgewell K, Clark BT, Gerwick WH (2010) The natural products chemistry of cyanobacteria. In: Moore B, Crews P (eds) Comprehensive natural products chemistry, 2nd edn. Elsevier, Oxford

    Google Scholar 

  12. Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochem 68:954–979

    CAS  Google Scholar 

  13. van Wagoner RM, Drummond AK, Wright JLC (2007) Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol 61:89–217

    PubMed  Google Scholar 

  14. Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27:1048–1065

    PubMed  CAS  Google Scholar 

  15. Grindberg RV, Shuman CF, Sorrels CM, Wingerd J, Gerwick WH (2008) Neurotoxic alkaloids from cyanobacteria. In: Fattorusso E, Taglialatela-Scafati O (eds) Modern alkaloids, structure, isolation, synthesis and biology. Wiley-VCH Verlang GmbH & Co, Weinheim

    Google Scholar 

  16. Klein D, Braekman JC, Daloze D, Hoffmann L, Demoulin V (1997) Lyngbyaloside, a novel 2,3,4-tri-O-methyl-6-deoxy-alpha-mannopyranoside macrolide from Lyngbya bouillonii (cyanobacteria). J Nat Prod 60:1057–1059

    CAS  Google Scholar 

  17. Wu M, Milligan KE, Gerwick WH (1997) Three new malyngamides from the marine cyanobacterium Lyngbya majuscula. Tetrahedron 53:15983–15990

    CAS  Google Scholar 

  18. Paquette LA, Yotsu-Yamashita M (2007) Polycavernosides. In: Botana LM (ed) Phycotoxins: chemistry and biochemistry. Blackwell, Ames

    Google Scholar 

  19. Simonin P, Juergens UJ, Rohmer M (1992) 35-O-beta-6-Amino-6-deoxyglucopyranosyl bacteriohopanetetrol, a novel triterpenoid of the hopane series from the cyanobacterium Synechocystis sp. PCC 6714. Tetrahedron Lett 33:3629–3632

    CAS  Google Scholar 

  20. Cardellina JH II, Marner FJ, Moore RE (1979) Seaweed dermatitis: structure of lyngbyatoxin A. Science 204:193–195

    PubMed  CAS  Google Scholar 

  21. Edwards DJ, Gerwick WH (2004) Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase. J Am Chem Soc 126:11432–11433

    PubMed  CAS  Google Scholar 

  22. Sato N, Wada H (2009) Lipid biosynthesis and its regulation in cyanobacteria. In: Wada H, Murata N (eds) Advances in photosynthesis and respiration, 30 (Lipids in photosynthesis essential and regulatory function). Springer, Dordrecht

    Google Scholar 

  23. Sitachitta N, Gerwick WH (1998) Grenadadiene and grenadamide, cyclopropyl-containing fatty acid metabolites from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 61:681–684

    PubMed  CAS  Google Scholar 

  24. Moore RE, Blackman AJ, Cheuk CE, Mynderse JS, Matsumoto GK, Clardy J, Woodard RW, Craig JC (1984) Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J Org Chem 49:2484–2489

    CAS  Google Scholar 

  25. Osborne NJ, Shaw GR, Webb PM (2007) Health effects of recreational exposure to Moreton Bay, Australia waters during a Lyngbya majuscula bloom. Environ Int 33:309–314

    PubMed  CAS  Google Scholar 

  26. Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R, Paulsen IT (2006) Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc Natl Acad Sci USA 103:13555–13559

    PubMed  CAS  Google Scholar 

  27. Kishi Y, Rando RR (1998) Structural basis of protein kinase C activation by tumor promoters. Acc Chem Res 31:163–172

    CAS  Google Scholar 

  28. Singh IP, Milligan KE, Gerwick WH (1999) Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 62:1333–1335

    PubMed  CAS  Google Scholar 

  29. Gutiérrez M, Andrianasolo EH, Shin WK, Goeger DE, Yokochi A, Schemies J, Jung M, France D, Cornell-Kennon S, Lee E, Gerwick WH (2009) Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco acid from the madagascar marine cyanobacterium Lyngbya majuscula. J Org Chem 74:5267–5275

    PubMed  Google Scholar 

  30. Gruenewald J, Marahiel MA (2006) Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 70:121–146

    CAS  Google Scholar 

  31. Donia MS, Ravel J, Schmidt EW (2008) A global assembly line for cyanobactins. Nat Chem Biol 4:341–343

    PubMed  CAS  Google Scholar 

  32. Taori K, Paul VJ, Luesch H (2008) Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J Nat Prod 71:1625–1629

    PubMed  CAS  Google Scholar 

  33. Linington RG, EdwardsDJ SCF, McPhail KL, Matainaho T, Gerwick WH (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J Nat Prod 71:22–27

    PubMed  CAS  Google Scholar 

  34. Ersmark K, Del Valle JR, Hanessian S (2008) Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Ed 47:1202–1223

    CAS  Google Scholar 

  35. Rouhiainen L, Paulin L, Suomalainen S, Hyytiainen H, Buikema W, Haselkorn R, Sivonen K (2000) Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37:156–167

    PubMed  CAS  Google Scholar 

  36. Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem 6:1760–1765

    PubMed  CAS  Google Scholar 

  37. Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Nat Acad Sci USA 102:7315–7320

    PubMed  CAS  Google Scholar 

  38. Rashid MA, Gustafson KR, Cardellina JH II, Boyd MR (1995) Patellamide F, a new cytotoxic cyclic peptide from the colonial ascidian Lissoclinum patella. J Nat Prod 58:594–597

    PubMed  CAS  Google Scholar 

  39. McIntosh JA, Schmidt EW (2010) Marine molecular machines: heterocyclization in cyanobactin biosynthesis. ChemBioChem 11:1413–1421

    PubMed  CAS  Google Scholar 

  40. Li B, Sher D, Kelly L, Shi Y, Huang K, Knerr PJ, Joewono I, Rusch D, Chisholm SW, van der Donk W (2010) Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc Nat Acad Sci USA 107:10430–10435

    PubMed  CAS  Google Scholar 

  41. Hooper GJ, Orjala J, Schatzman RC, Gerwick WH (1998) Carmabin A and B, new lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 61:529–533

    PubMed  CAS  Google Scholar 

  42. McPhail KL, Correa J, Linington RG, Gonzalez J, Ortega-Barria E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:984–988

    PubMed  CAS  Google Scholar 

  43. Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate D (1994) Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:1243–1245

    CAS  Google Scholar 

  44. Blokhin AV, Yoo H-D, Geralds RS, Nagle DG, Gerwick WH, Hamel E (1995) Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogs. Mol Pharmacol 48:523–531

    PubMed  CAS  Google Scholar 

  45. Wipf P, Reeves JT, Balachandran R, Day BW (2002) Synthesis and biological evaluation of structurally highly modified analogues of the antimitotic natural product curacin A. J Med Chem 45:1901–1917

    PubMed  CAS  Google Scholar 

  46. Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an anti-tubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367

    PubMed  CAS  Google Scholar 

  47. Gu L, Wang B, Kulkarni A, Geders TW, Grindberg RV, Gerwick L, Håkansson K, Wipf P, Smith JL, Gerwick WH, Sherman DH (2009) Metamorphic enzyme assembly in polyketide diversification. Nature 459:731–735

    PubMed  CAS  Google Scholar 

  48. Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99–109

    PubMed  CAS  Google Scholar 

  49. Gu L, Wang B, Kulkarni A, Gehret JJ, Lloyd KR, Gerwick L, Gerwick WH, Wipf P, Hakansson K, Smith JL, Sherman DH (2009) Polyketide decarboxylative chain termination preceded by O-sulfonation in curacin A biosynthesis. J Am Chem Soc 131:16033–16035

    PubMed  CAS  Google Scholar 

  50. Pettit GR, Day JF, Hartwell JL, Wood HB (1970) Antineoplastic components of marine animals. Nature 227:962–963

    PubMed  CAS  Google Scholar 

  51. Patel S, Keohan ML, Saif MW, Rushing D, Baez L, Feit K, DeJager R, Anderson S (2006) Phase II study of intravenous TZT-1027 in patients with advanced or metastatic soft-tissue sarcomas with prior exposure to anthracycline-based chemotherapy. Cancer 107:2881–2887

    PubMed  CAS  Google Scholar 

  52. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    PubMed  CAS  Google Scholar 

  53. Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscule. J Am Chem Soc 123:5418–5423

    PubMed  CAS  Google Scholar 

  54. Liu Y, Law BK, Luesch H (2009) Apratoxin A reversibly inhibits the secretory pathway by preventing cotranslational translocation. Mol Pharmacol 76:91–104

    PubMed  CAS  Google Scholar 

  55. Shen S, Zhang P, Lovchik MA, Li Y, Tang L, Chen Z, Zeng R, Ma D, Yuan J, Yu Q (2009) Cyclodepsipeptide toxin promotes the degradation of Hsp90 client proteins through chaperone-mediated autophagy. J Cell Biol 185:629–639

    PubMed  CAS  Google Scholar 

  56. Doi T, Numajiri Y, Munakata A, Takahashi T (2006) Total synthesis of apratoxin A. Org Lett 8:531–534

    PubMed  CAS  Google Scholar 

  57. Tidgewell K, Engene N, Byrum T, Media J, Valeriote FA, Gerwick WH (2010) Diversification of a modular natural product pathway: production of apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. ChemBioChem 11:1458–1466

    PubMed  CAS  Google Scholar 

  58. Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu W, Gerwick L, Dorrestein PC, Pevzner P, Lasken R, Gerwick WH (2011) Single cell genome amplification accelerates natural product pathway characterization from complex microbial assemblages. PLoS One 6(4):e18565

    PubMed  CAS  Google Scholar 

  59. Kanchan T, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807

    Google Scholar 

  60. Carmeli S, Moore RE, Patterson GML (1991) Mirabazoles, minor tantazole-related cytotoxins from the terrestrial blue-green alga Scytonema mirabile. Tetrahedron Lett 32:2593–2596

    CAS  Google Scholar 

  61. Li WI, Berman FW, Okino T, Yokokawa F, Shioiri T, Gerwick WH, Murray TF (2001) Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proc Natl Acad Sci USA 98:7599–7604

    PubMed  CAS  Google Scholar 

  62. Orjala J, Nagle DG, Hsu V, Gerwick WH (1995) Antillatoxin, an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscula. J Am Chem Soc 117:8281–8282

    CAS  Google Scholar 

  63. Cao Z, Gerwick WH, Murray TF (2010) Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 alpha subunits. BMC Neurosci 11:154

    Google Scholar 

  64. Nagle DG, Paul VJ (1999) Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J Phycol 35:1412–1421

    CAS  Google Scholar 

  65. Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, Engen DV, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471

    CAS  Google Scholar 

  66. Murakami M, Oshima Y, Yasumoto T (1982) Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. B Jpn Soc Sci Fish 48:69–72

    CAS  Google Scholar 

  67. Yasumoto T, Oshima Y, Sugasawa W, Fukuyo Y, Oguri H, Igarashi T, Fujita N (1980) Identification of Dinophysis fortii as the causative organisms of diarrhetic shellfish poisoning. Nippon Suisan Gakk 46:1405–1411

    Google Scholar 

  68. Bialojan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem J 256:283–290

    PubMed  CAS  Google Scholar 

  69. Haystead TAJ, Sim ATR, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337:78–81

    PubMed  CAS  Google Scholar 

  70. Shimizu Y (1978) Dinoflagellate toxins. In: Scheuer PJ (ed) Marine natural products. Academic, New York

    Google Scholar 

  71. Lin YY, Risk M, Ray SM, van Engen D, Clardy J, Golik J, James JC, Nakanishi K (1981) Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J Am Chem Soc 103:6773–6775

    CAS  Google Scholar 

  72. Sagir Ahmed MD, Arakawa O, Onoue Y (1995) Toxicity of cultured Chattonella marina. In: Lassus P, Arzul G, Erhard E, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier, Paris

    Google Scholar 

  73. Khan S, Arakawa O, Onoue Y (1997) Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquac Res 28:9–14

    Google Scholar 

  74. Hallegraeff GM, Munday BL, Baden DG, Whitney PL (1998) Chattonnella marina raphidophyte bloom associated with mortality of cultured bluefin tuna (Thunnus accoyii) in south Australia. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, Spain

    Google Scholar 

  75. Alam M, Trieff NM, Ray SM, Hudson JE (1975) Isolation and partial characterization of toxins from the dinoflagellate Gymnodinium breve Davis. J Pharm Sci 64:865–867

    PubMed  CAS  Google Scholar 

  76. Shimizu Y, Chou HN, Bando H, van Duyne GD, Clardy J (1986) Structure of brevetoxin A (GB-1 toxin), the most potent toxin in the Florida red tide organism Gymnodinium breve (Ptychodiscus brevis). J Am Chem Soc 108:514–515

    PubMed  CAS  Google Scholar 

  77. Nicolaou KC, Yang Z, Shi G-Q, Gunzner JL, Agrios KA, Gärtner P (1998) Total synthesis of brevetoxin A. Nature 392:264–269

    PubMed  CAS  Google Scholar 

  78. Baden DG (1983) Marine food-born dinoflagellate toxins. Int Rev Cytol 82:99–150

    PubMed  CAS  Google Scholar 

  79. Kirkpatrick B, Fleming LE, Squicciarini D, Backer LC, Clark R, Abraham W, Benson J, Chenge YS, Johnson D, Pierce R, Zaias J, Bossart GD, Baden DG (2004) Literature review of Florida red tide: implications for human health effects. Harmful Algae 3:99–115

    PubMed  Google Scholar 

  80. Morris PD, Campbell DS, Taylor TJ, Freeman JI (1991) Clinical and epidemiological features of neurotoxic shellfish poisoning in North Carolina. Am J Public Health 81:471–474

    PubMed  CAS  Google Scholar 

  81. Baden DG, Adams DJ (2000) Brevetoxins: chemistry, mechanism of action, and methods of detection. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New York

    Google Scholar 

  82. Cheng YS, Zhou Y, Irvin CM, Pierce RH, Naar J, Backer LC, Fleming LE, Kirkpatrick B, Baden DG (2005) Characterization of marine aerosol for assessment of human exposure to brevetoxins. Environ Health Perspect 113:638–643

    PubMed  CAS  Google Scholar 

  83. Sandlers L (2010) Fish tale. New York Times. April 9, 2010

    Google Scholar 

  84. Terao K (2000) Ciguatera toxins: toxicology. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New York

    Google Scholar 

  85. Murata M, Legrand AM, Ishibashi Y, Yasumoto T (1989) Structures of ciguatoxin and its congener. J Am Chem Soc 111:8929–8931

    CAS  Google Scholar 

  86. Murata M, Legrand AM, Ishibashi Y, Fukui M, Yasumoto T (1990) Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus. J Am Chem Soc 112:4380–4386

    CAS  Google Scholar 

  87. Satake M, Morohashi A, Oguri H, Oishi T, Hirama M, Harada N, Yasumoto T (1997) The absolute configuration of ciguatoxin. J Am Chem Soc 119:11325–11326

    CAS  Google Scholar 

  88. Yasumoto T, Nakajima I, Bagnis R, Adachi R (1977) Finding of a dinoflagellate as a likely culprit of ciguatera. B Jpn Soc Sci Fish 43:1021–1026

    Google Scholar 

  89. Legrand AM (1999) Ciguatera toxins: origin, transfer through the food chain and toxicity to humans. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, Spain

    Google Scholar 

  90. Guzman-Perez SE, Park DL (2000) Ciguatera toxins: chemistry and diction. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New York

    Google Scholar 

  91. Lewis RJ, Molgo J, Adams DJ (2000) Pharmacology of toxins involved in ciguatera and related fish poisonings. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New York

    Google Scholar 

  92. Lewis RJ, Sellin M, Poli MA, Norton RS, MacLeod JK, Sheil MM (1991) Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon 29:1115–1127

    PubMed  CAS  Google Scholar 

  93. Scheuer PJ, Takahashi W, Tsutsumi J, Yoshida T (1967) Ciguatoxin: isolation and chemical nature. Science 155:1267–1268

    PubMed  CAS  Google Scholar 

  94. Moore RE, Scheuer PJ (1971) Palytoxin-new marine toxin from a coelenterate. Science 172:495–498

    PubMed  CAS  Google Scholar 

  95. Moore RE, Bartolini G (1981) Structure of palytoxin. J Am Chem Soc 103:2491–2494

    CAS  Google Scholar 

  96. Uemura D, Ueda K, Hirata Y, Naoki H, Iwashita T (1981) Further-studies on palytoxin II. Structure of palytoxin. Tetrahedron Lett 22:2781–2784

    CAS  Google Scholar 

  97. Armstrong RW, Beau JM, Cheon SH, Christ WJ, Fujioka H, Ham W-H, Hawkins LD, Jin H, Kang SH, Kishi Y, Martinelli MJ, McWhorter WW Jr, Mizuno M, Nakata M, Stutz AE, Talamas FX, Taniguchi M, Tino JA, Ueda K, Uenishi J, White JB, Yonaga M (1989) Total synthesis of palytoxin carboxylic acid and palytoxin amide. J Am Chem Soc 111:7530–7533

    CAS  Google Scholar 

  98. Suh EM, Kishi Y (1994) Synthesis of palytoxin from palytoxin carboxylic acid. J Am Chem Soc 116:11205–11206

    CAS  Google Scholar 

  99. Maeda M, Kodama R, Tanaka T, Yohizumi H, Nomyoto K, Takemoto T, Fujita M (1985) Structures of insecticidal substances isolated from a red alga, Chondria armata. In: Symposium Organizing Committee (eds) Proceedings of the 27th symposium on the chemistry of natural products, Hiroshima, Japan

    Google Scholar 

  100. Usami M, Satake M, Ishida S, Inoue A, Kan Y, Yasumoto T (1995) Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. J Am Chem Soc 117:5389–5390

    CAS  Google Scholar 

  101. Carballeira NM, Emiliano A, Sostre A, Restituyo JA, González IM, Colón GM, Tosteson CG, Tosteson TR (1998) Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with Caribbean Palythoa species. Lipids 33:627–632

    PubMed  CAS  Google Scholar 

  102. Seemann P, Gernert C, Schmitt S, Mebs D, Hentschel U (2009) Detection of hemolytic bacteria from Palythoa caribaeorum (Cnidaria, Zoantharia) using a novel palytoxin-screening assay. Antonie van Leeuwenhoek 96:405–411

    PubMed  CAS  Google Scholar 

  103. Frolova GM, Kuznetsova TA, Mikhailov VV, Elyakov GB (2000) An enzyme linked immunosorbent assay for detecting palytoxin-producing bacteria. Russ J Bioorg Chem 26:285–289

    CAS  Google Scholar 

  104. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362

    PubMed  CAS  Google Scholar 

  105. Bottinger H, Beress L, Habermann E (1986) Involvement of (Na+, K+-ATPase) in binding and actions of palytoxin on human erythrocytes. Biochim Biophys Acta 861:164–176

    Google Scholar 

  106. Alcala AC, Alcala LC, Garth JS, Yasumura D, Yasumoto T (1998) Human fatality due to ingestion of the crab Demania reynaudii contained a palytoxin-like toxin. Toxicon 26:105–107

    Google Scholar 

  107. Granéli E, Ferreira CEL, Yasumoto T, Rodrigues E, Neves MHB (2002) Sea urchins poisoning by the benthic dinoflagellate Ostreopsis ovata on the Brazilian coast. The Xth International Conference on Harmful Algae, 21–25 October, Florida, USA

    Google Scholar 

  108. Fukui M, Murata M, Inoue A, Gawel M, Yasumoto T (1987) Occurrence of palytoxin in the trigger fish Melichthys vidua. Toxicon 25:1121–1124

    PubMed  CAS  Google Scholar 

  109. Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Ratsimaloto N, Naoki H, Yasumoto T (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37:55–65

    PubMed  CAS  Google Scholar 

  110. Taniyama S, Arakawa O, Terada M, Nishio S, Takatani T, Mahmud Y, Noguchi T (2003) Ostreopsis sp., a possible origin of palytoxin (PTX) in parrotfish Scarus ovifrons. Toxicon 42:29–33

    PubMed  CAS  Google Scholar 

  111. Hoffmann K, Hermanns-Clausen M, Buhl C, Buchler MW, Schemmer P, Mebs D, Kauferstein S (2008) A case of palytoxin poisoning due to contact with zoanthid corals through a skin injury. Toxicon 51:1535–1537

    PubMed  CAS  Google Scholar 

  112. Deeds JR, Schwartz MD (2009) Human risk associated with palytoxin exposure. Toxicon 56:150–162

    PubMed  Google Scholar 

  113. Ciminiello P, Dell'Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Grillo C, Melchiorre N (2006) The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal Chem 78:6153–6159

    PubMed  CAS  Google Scholar 

  114. Kodama M (2000) Ecology, classification, and origin. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New York

    Google Scholar 

  115. Sommer H, Meyer KF (1937) Paralytic shellfish poisoning. Arch Pathol 24:560–598

    CAS  Google Scholar 

  116. Schantz EJ, Mold JD, Stanger DW, Shavel J, Riel FJ, Bowden JP, Lynch JM, Wyler RS, Riegel B, Sommer H (1957) Paralytic shellfish poison. VI. A procedure for the isolation and purification of the poison from toxic clam and mussel tissues. J Am Chem Soc 79:5230–5235

    CAS  Google Scholar 

  117. Schantz EJ, Ghazarossian VE, Schnoes HK, Strong FM, Springer JP, Pezzanite JO, Clardy J (1975) Structure of saxitoxin. J Am Chem Soc 97:1238–1239

    PubMed  CAS  Google Scholar 

  118. Tanito H, Nakata T, Kaneko T, Kishi Y (1977) A stereospecific total synthesis of d/l-saxitoxin. J Am Chem Soc 99:2818–2819

    Google Scholar 

  119. Jacobi PA, Martinelli MJ, Polanc S (1984) Total synthesis of (+/−)-saxitoxin. J Am Chem Soc 106:5594–5598

    CAS  Google Scholar 

  120. Fleming JJ, Fiori KW, Du Bois J (2003) Novel iminium ion equivalents prepared through C − H oxidation for the stereocontrolled synthesis of functionalized propargylic amine derivatives. J Am Chem Soc 125:2028–2029

    PubMed  CAS  Google Scholar 

  121. Fleming JJ, Du Bois J (2006) A synthesis of (+)-saxitoxin. J Am Chem Soc 128:3926–3927

    PubMed  CAS  Google Scholar 

  122. Shimizu Y, Norte M, Hori A, Genenah A, Kobayashi M (1984) Biosynthesis of saxitoxin analogues: the unexpected pathway. J Am Chem Soc 106:6433–6434

    CAS  Google Scholar 

  123. Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053

    PubMed  CAS  Google Scholar 

  124. Shumway SE (1990) A review of the effects of algal blooms on shellfish and aquaculture. J World Aquacult Soc 21:65–104

    Google Scholar 

  125. Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63:3104–3110

    PubMed  CAS  Google Scholar 

  126. Galvão JA, Oetterer M, Bittencourt-Oliveira MC, Barros SG, Hiller S, Erler K, Luckas B, Pinto E, Kujbida P (2009) Saxitoxins accumulation by freshwater tilapia (Oreochromis niloticus) for human consumption. Toxicon 54:891–894

    PubMed  Google Scholar 

  127. Arias HR (2006) Marine toxins targeting ion channels. Mar Drugs 4:37–69

    CAS  Google Scholar 

  128. Lagos N, Andrinolo D (2000) Paralytic shellfish poisoning (PSP): toxicology and kinetics. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New York

    Google Scholar 

  129. Satake M, Ofuji K, Naoki H, James KJ, Furey A, McMahon T, Silke J, Yasumoto T (1998) Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc 120:9967–9968

    CAS  Google Scholar 

  130. James KJ, Fidalgo Saez MJ, Furey A, Lehane M (2003) Azaspiracid poisoning, the food-borne illness associated with shellfish consumption. Food Addit Contam 21:879–892

    Google Scholar 

  131. Hess P, McMahon T, Slattery D, Swords D, Dowling G, McCarron M, Clarke D, Gibbons W, Silke J, O' Cinneide M (2003) Use of LC-MS testing to identify lipophilic toxins, to establish local trends and interspecies differences and to test the comparability of LC-MS testing with the mouse bioassay: an example from the Irish biotoxin monitoring programme 2001. In: Villalba A, Reguera B, Romalde JL, Beiras R (eds) Molluscan shellfish safety, Proceedings of the 4th international conference on molluscan shellfish safety. Consellería de Pesca e Asuntos Marítimos da Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago de Compostela, Spain

    Google Scholar 

  132. Braña Magdalena A, Lehane M, Krys S, Fernandez ML, Furey A, James KJ (2003) The first identification of azaspiracids in shellfish from France and Spain. Toxicon 42:105–108

    Google Scholar 

  133. James KJ, Furey A, Lehane M, Ramstad H, Aune T, Hovgaard P, Morris S, Higman W, Satake M, Yasumoto T (2002) First evidence of an extensive northern European distribution of azaspiracid poisoning (AZP) toxins in shellfish. Toxicon 40:909–915

    PubMed  CAS  Google Scholar 

  134. Aasen JAB, Torgersen T, Dahl E, Naustvoll L-J, Aune T (2006) Confirmation of azaspiracids in mussels in Norwegian coastal areas, and full profile at one location. In: Henshilwood K, Deegan B, McMahon T, Cusack C, Keaveney S, Silke J, O' Cinneide M, Lyons D, Hess P (eds) Proceedings of the 5th international conference on molluscan shellfish safety, Galway, Ireland, June 14–18 2004, The Marine Institute, Rinville, Oranmore, Galway, Ireland

    Google Scholar 

  135. Torgersen T, Bruun Bremmes N, Rundberget T, Aune T (2008) Structural confirmation and occurrence of azaspiracids in Scandinavian brown crabs (Cancer pagurus). Toxicon 51:93–101

    PubMed  CAS  Google Scholar 

  136. Taleb H, Vale P, Amanhir R, Benhadouch A, Sagou R, Chafik A (2006) First detection of azaspiracids in mussels in north west Africa. J Shellfish Res 25:1067–1070

    Google Scholar 

  137. Anonimity (2004) Regulation (EC) No 853/2004 of 29 April 2004 laying down specific hygiene rules for the hygiene of foodstuffs. Off J Eur Commun L139, 55ff

    Google Scholar 

  138. Nicolaou KC, Li Y, Uesaka N, Koftis TV, Vyskocil S, Ling T, Govindasamy M, Qian W, Bernal F, Chen D (2003) Total synthesis of the proposed azaspiracid-1 structure, Part 1: Construction of the enantiomerically pure C1-C20, C21-C27, and C28-C40 fragments. Angew Chem 42:3643–3648

    CAS  Google Scholar 

  139. Nicolaou KC, Chen D, Li Y, Quan W, Ling T, Vyskocil S, Koftis TV, Govindasamy M, Uesaka N (2003) Total synthesis of the proposed azaspiracid-1 structure, Part 2: Coupling of the C1-C20, C21-C27, and C28-C40 fragments and completion of the synthesis. Angew Chem 42:3649–3653

    CAS  Google Scholar 

  140. Nicolaou KC, Vyskocil S, Koftis TV, Yamada TMA, Ling T, Chen DYK, Tang W, Petrovic G, Frederick MO (2004) Structural revision and total synthesis of azaspiracid-1, Part 1: Intelligence gathering and tentative proposal. Angew Chem 116:2–8

    Google Scholar 

  141. Nicolaou KC, Koftis TV, Vyskocil S, Petrovic G, Ling T, Yamada TMA, Tang W, Frederick MO (2004) Structural revision and total synthesis of azaspiracid-1, Part 2: Definition of the ABCD domain and total synthesis. Angew Chem Int Ed 43:4318–4324

    CAS  Google Scholar 

  142. Yasumoto T (2001) The chemistry and biological function of natural marine toxins. Chem Record 1:228–242

    CAS  Google Scholar 

  143. Ito E, Satake M, Ofuji K, Kurita N, McMahon T, James K, Yasumoto T (2000) Multiple organ damage caused by a new toxin Azaspiracid, isolated from mussels produced in Ireland. Toxicon 38:917–930

    PubMed  CAS  Google Scholar 

  144. James KJ, Moroney C, Roden C, Satake M, Yasumoto T, Lehane M, Furey A (2003) Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning. Toxicon 41:145–151

    PubMed  CAS  Google Scholar 

  145. James KJ, Sierra MD, Lehane M, Braña Magdalena A, Moroney C, Furey A (2004) Azaspiracid poisoning: Aetiology, toxin dynamics and bioconversion in shellfish. In: Steidinger K, Landsberg J, Tomas CR, Vargo GA (eds) Harmful algae 2002, Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO

    Google Scholar 

  146. Satake M, Ofuji K, James KJ, Furey A, Yasumoto T (1998) New toxic event caused by Irish mussels. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, Spain

    Google Scholar 

  147. Ito E, Terao K, McMahon T, Silke J, Yasumoto T (1998) Acute pathological changes in mice caused by crude extracts of novel toxins isolated from Irish mussels. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, Spain

    Google Scholar 

  148. Seki T, Satake M, Mackenzie L, Kaspar HF, Yasumoto T (1995) Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate Gymnodinium sp. Tetrahedron Lett 36:7093–7096

    Google Scholar 

  149. Seki T, Satake M, MacKenzie L, Kaspar HF, Yasumoto T (1996) Gymnodimine, a novel toxic imine isolated from the Foveaux strait oysters and Gymnodinium sp. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. Intergovernmental Oceanographic Commission of UNESCO, Paris

    Google Scholar 

  150. Mackenzie L, Haywood A, Adamson J, Truman P, Till D, Seki T, Satake M, Yasumoto T (1996) Gymnodimine contamination of shellfish in New Zealand. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. Intergovernmental Oceanographic Commission of UNESCO, Paris

    Google Scholar 

  151. Stirling DJ (2001) Survey of historical New Zealand shellfish samples for accumulation of gymnodimine. New Zeal J Mar Fresh 35:851–857

    CAS  Google Scholar 

  152. Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J, Mackenzie L (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J Phycol 40:165–179

    Google Scholar 

  153. Stewart M, Blunt JW, Munro MHG, Robinson WT, Hannah DJ (1997) The absolute stereochemistry of the New Zealand shellfish toxin gymnodimine. Tetrahedron Lett 38:4889–4890

    CAS  Google Scholar 

  154. Kharrat R, Servent D, Girard E, Ouanounou G, Amar M, Marrouchi R, Benoit E, Molgo J (2008) The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity. J neurochem 107:952–963

    PubMed  CAS  Google Scholar 

  155. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Culture and collection of algae. Japanese Society of Plant Physiology, Tokyo, Japan

    Google Scholar 

  156. Ishibashi M, Yamaguchi N, Sasaki T, Kobayashi J (1994) Amphidinolide N, a novel 26-membered macrolide with remarkably potent cytotoxicity from the cultured marine dinoflagellate Amphidinium sp. J Chem Soc Chem Comm 12:1455–1456

    Google Scholar 

  157. Bauer J, Maranda L, Young KA, Shimizu Y, Fairchild C, Cornell L, MacBeth J, Huang S (1995) Isolation and structure of caribenolide I, a highly potent antitumor macrolide from a cultured free-swimming Caribbean dinoflagellate, Amphidinium sp. S1-36-5. J Org Chem 60:1084–1086

    CAS  Google Scholar 

  158. Sharma GM, Michaels L, Burkholder PR (1968) Goniodomin, a new antibiotic from a dinoflagellate. J Antibiot 21:659–664

    PubMed  CAS  Google Scholar 

  159. Murakami M, Makabe K, Yamaguchi K, Konosu S, Walchli MR (1988) Goniodomin A, a novel polyether macrolide from the dinoflagellate Goniodoma pseudogoniaulax. Tetrahedron Lett 29:1149–1152

    CAS  Google Scholar 

  160. Trench RK (1981) Cellular and molecular interactions in symbioses between dinoflagellates and marine invertebrates. Pure Appl Chem 53:819–835

    CAS  Google Scholar 

  161. Blank RJ, Trench RK (1985) Speciation and symbiotic dinoflagellates. Science 229:656–658

    PubMed  CAS  Google Scholar 

  162. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    PubMed  CAS  Google Scholar 

  163. Nakamura H, Asari T, Murai A, Kan Y, Kondo T, Yoshida K, Ohizumi Y (1995) Zooxanthellatoxin-A, a potent vasoconstrictive 62-membered lactone from a symbiotic dinoflagellate. J Am Chem Society 117:550–551

    CAS  Google Scholar 

  164. Rho MC, Nakahata N, Nakamura H, Murai A, Ohizumi Y (1995) Activation of rabbit platelets by Ca2+ influx and thromboxane A2 release in an external Ca2+-dependent manner by zooxanthellatoxin-A, a novel polyol. Brit J Pharmacol 115:433–440

    CAS  Google Scholar 

  165. Kita M, Ohishi N, Konishi K, Kondo M, Koyama T, Kitamura M, Yamada K, Uemura D (2007) Symbiodinolide, a novel polyol macrolide that activates N-type Ca2+ channel, from the symbiotic marine dinoflagellate Symbiodinium sp. Tetrahedron 63:6241–6251

    CAS  Google Scholar 

  166. Satake M, Murata M, Yasumoto T, Fujita T, Naoki H (1991) Amphidinol, a polyhydroxypolyene antifungal agent with an unprecedented structure, from a marine dinoflagellate, Ampbidnium klebsii. J Am Chem Soc 113:9859–9861

    CAS  Google Scholar 

  167. Houdai T, Matsuoka S, Morsy N, Matsumori N, Satake M, Murata M (2005) Hairpin conformation of amphidinols possibly accounting for potent membrane permeabilizing activities. Tetrahedron 61:2795–2802

    CAS  Google Scholar 

  168. Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306:79–86

    PubMed  CAS  Google Scholar 

  169. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    PubMed  CAS  Google Scholar 

  170. Lefebvre KA, Robertson A (2010) Domoic acid and human exposure risks: a review. Toxicon 56:218–230

    PubMed  CAS  Google Scholar 

  171. Wright JLC, Boyd RK, De Freitas ASW, Falk M, Foxall RA, Jamieson WD, Laycock MV, McCulloch AW, McInnes AG et al (1989) Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 67:481–90

    CAS  Google Scholar 

  172. Ramsey UP, Douglas DJ, Walter JA, Wright JLC (1998) Biosynthesis of domoic acid by the diatom Pseudo-nitzschia multiseries. Nat Toxins 6:137–146

    PubMed  CAS  Google Scholar 

  173. Gerwick WH, Moghaddam MF, Hamberg M (1991) Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: Mechanism of formation of vicinal dihydroxy fatty acids. Arch Biochem Biophys 290:436–444

    PubMed  CAS  Google Scholar 

  174. Wang R, Shimizu Y (1990) Bacillarolides I and II, a new type of cyclopentane eicosanoids from the diatom Nitzschia pungens. J Chem Soc Chem Comm 5:413–14

    Google Scholar 

  175. Wang R, Shimizu Y, Steiner JR, Clardy J (1993) The absolute configuration of bacillariolides I and II, a new type of cyclopentane icosanoids from a marine diatom. J Chem Soc Chem Comm 4:379–81

    Google Scholar 

  176. Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 19:493–511

    PubMed  CAS  Google Scholar 

  177. Pohnert G (2005) Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 6:946–959

    PubMed  CAS  Google Scholar 

  178. Fontana A, d'Ippolito G, Cutignano A, Miralto A, Lanora A, Romano G, Cimino G (2007) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:481–490

    CAS  Google Scholar 

  179. Masse G, Belt ST, Rowland SJ (2004) Biosynthesis of unusual monocyclic alkenes by the diatom Rhizosolenia setigera (Brightwell). Phytochem 65:1101–1106

    CAS  Google Scholar 

  180. Simon TB, Guillaume Massé WGA, Jean-Michel R, Steven JR (2001) C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus. Org Geochem 32:1271–1275

    Google Scholar 

  181. Elovson J, Vagelos PR (1969) A new class of lipids: chlorosulfolipids. Proc Natl Acad Sci USA 62:957–963

    PubMed  CAS  Google Scholar 

  182. Haines TH, Pousada M, Stern B, Mayers GL (1969) Microbial sulpholipids: (R)-13-Chloro-l-(R)-14-docosanediol disulphate and polychlorosulpholipids in Ochromonas danica. Biochem J 113:565–566

    PubMed  CAS  Google Scholar 

  183. Elovson J, Vagelos PR (1970) Structure of the major species of chlorosulfolipid from Ochromonas danica. 2,2,11,13,15,16-Hexachloro-n-docosane-1,4-disulfate. Biochemistry 9:3110–3126

    PubMed  CAS  Google Scholar 

  184. Haines TH (1973) Sulfolipids and halosulfolipids. In: Erwin JA (ed) Lipids and biomembranes of eukaryotic microorganisms. Academic, New York

    Google Scholar 

  185. Haines TH (1973) Halogen- and sulfur-containing lipids of Ochromonas. Annu Rev Microbiol 27:403–412

    PubMed  CAS  Google Scholar 

  186. Chen JL, Proteau PJ, Roberts MA, Gerwick WH, Slate DL, Lee RH (1994) Structure of malhamensilipin A, an inhibitor of protein tyrosine kinase, from the cultured chrysophyte Poterioochromonas malhamensis. J Nat Prod 57:524–527

    PubMed  CAS  Google Scholar 

  187. Pereira AR, Byrum T, Shibuya GM, Vanderwal CD, Gerwick WH (2010) Structure revision and absolute configuration of malhamensilipin A from the freshwater chrysophyte Poterioochromonas malhamensis. J Nat Prod 73:279–283

    PubMed  CAS  Google Scholar 

  188. Bedke DK, Shibuya GM, Pereira AR, Gerwick WH, Vanderwal CD (2010) A concise enantioselective synthesis of the chlorosulfolipid malhamensilipin A. J Am Chem Soc 132:2542–2543

    PubMed  CAS  Google Scholar 

  189. Ciminiello P, Fattorusso E, Forino M, Magno S, Di Rosa M, Ianaro A, Poletti R (2001) Structural elucidation of a new cytotoxin isolated from mussels of the Adriatic Sea. J Org Chem 66:578–582

    PubMed  CAS  Google Scholar 

  190. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Di Rosa M, Ianaro A, Poletti R (2002) Structure and stereochemistry of a new cytotoxic polychlorinated sulfolipid from Adriatic shellfish. J Am Chem Soc 124:13114–13120

    PubMed  CAS  Google Scholar 

  191. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno S (2003) Toxins from Adriatic blue mussels. A decade of studies. Pure Appl Chem 75:325–336

    CAS  Google Scholar 

  192. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno S, Di Meglio P, Ianaro A, Poletti R (2004) A new cytotoxic polychlorinated sulfolipid from contaminated Adriatic mussels. Tetrahedron 60:7093–7098

    CAS  Google Scholar 

  193. Ciminiello P, Fattorusso E (2004) Shellfish toxins – Chemical studies on northern Adriatic mussels. Eur J Org Chem 12:2533–2551

    Google Scholar 

  194. Chao CH, Huang HC, Wang GH, Wen ZH, Wang WH, Chen IM, Sheu JH (2010) Chlorosulfolipids and the corresponding alcohols from the octocoral Dendronephthya griffini. Chem Pharm Bull 58:944–946

    PubMed  CAS  Google Scholar 

  195. Chen LL, Pousada M, Haines TH (1976) The flagellar membrane of Ochromonas danica. J Biol Chem 251:1835–1842

    PubMed  CAS  Google Scholar 

  196. Kawahara T, Kumaki Y, Kamada T, Ishii T, Okino T (2009) Absolute configuration of chlorosulfolipids from the chrysophyta Ochromonas danica. J Org Chem 74:6016–6025

    PubMed  CAS  Google Scholar 

  197. Shibuya GM, Kanady JS, Vanderwal CD (2008) Stereoselective dichlorination of allylic alcohol derivatives to access key stereochemical arrays of the chlorosulfolipids. J Am Chem Soc 130:12514–12518

    PubMed  CAS  Google Scholar 

  198. Kanady JS, Nguyen JD, Ziller JW, Vanderwal CD (2009) Synthesis and characterization of all four diastereomers of 3,4-dichloro-2-pentanol, motifs relevant to the chlorosulfolipids. J Org Chem 74:2175–2178

    PubMed  CAS  Google Scholar 

  199. Yoshimitsu T, Fukumoto N, Tanaka T (2009) Enantiocontrolled synthesis of polychlorinated hydrocarbon motifs: a nucleophilic multiple chlorination process revisited. J Org Chem 74:696–702

    PubMed  CAS  Google Scholar 

  200. Nilewski C, Geisser RW, Carreira EM (2009) Total synthesis of a chlorosulpholipid cytotoxin associated with seafood poisoning. Nature 457:573–576

    PubMed  CAS  Google Scholar 

  201. Nilewski C, Geisser RW, Ebert MO, Carreira EM (2009) Conformational and configurational analysis in the study and synthesis of chlorinated natural products. J Am Chem Soc 131:15866–15876

    PubMed  CAS  Google Scholar 

  202. Bedke DK, Shibuya GM, Pereira A, Gerwick WH, Haines TH, Vanderwal CD (2009) Relative stereochemistry determination and synthesis of the major chlorosulfolipid from Ochromonas danica. J Am Chem Soc 131:7570–7572

    PubMed  CAS  Google Scholar 

  203. Gerwick WH, Lopez A, Van Duyne GD, Clardy J, Ortiz W, Baez A (1986) Hormothamnione, a novel cytotoxic styrylchromone from the marine cyanophyte Hormothamnion enteromorphoides Grunow. Tetrahedron Lett 27:1979–1982

    CAS  Google Scholar 

  204. Gerwick WH (1989) 6-Desmethoxyhormothamnione, a new cytotoxic styrylchromone from the marine Chrysophyte Chrysophaeum taylori. J Nat Prod 52:252–256

    PubMed  CAS  Google Scholar 

  205. Lewis IF, Bryan HF (1941) A new protophyte from the dry tortugas. Am J Bot 28:343–348

    Google Scholar 

  206. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608

    PubMed  CAS  Google Scholar 

  207. Takamatsu S, Nagle DG, Gerwick WH (2004) Secondary metabolites from marine cyanobacteria and algae inhibit LFA-1/ICAM-1 mediated cell adhesion. Planta Med 70:127–131

    PubMed  CAS  Google Scholar 

  208. Alonso R, Brossi A (1988) Synthesis of hormothamnione. Tetrahedron Lett 29:735–738

    CAS  Google Scholar 

  209. Ayyangar NR, Khan RA, Deshpande VH (1988) Synthesis of hormothamnione. Tetrahedron Lett 29:2347–2348

    CAS  Google Scholar 

  210. McGarry LW, Detty MR (1990) Synthesis of highly functionalized flavones and chromones using cycloacylation reactions and C-3 functionalization. A total synthesis of hormothamnione. J Org Chem 55:4349–4356

    CAS  Google Scholar 

  211. Niveta J, Gambhir G, Krishnamurty HG (2001) Synthesis of hormothamnione and 6-desmethoxyhormothamnione. Indian J Chem 40B:278–283

    Google Scholar 

  212. Plaza A, Keffer JL, Bifulco G, Lloyd JR, Bewley CA (2010) Chrysophaentins A-H, antibacterial bisdiarylbutene macrocycles that inhibit the bacterial cell division protein FtsZ. J Am Chem Soc 132:9069–9077

    PubMed  CAS  Google Scholar 

  213. Lock RL, Harry EJ (2008) Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discovery 7:324–338

    CAS  Google Scholar 

  214. Otterstrøm CV, Steemann-Nielsen E (1940) Two cases of extensive mortality in fishes caused by the flagellate Prymnesium parvum Carter. Rep Dan Biol Sta 44:1–24

    Google Scholar 

  215. Shilo M, Aschner M (1953) Factors governing the toxicity of cultures containing phytoflagellate Prymnesium parvum Carter. J Gen Microbiol 8:333–343

    PubMed  CAS  Google Scholar 

  216. Lindholm T, Virtanen T (1992) A Bloom of Prymnesium parvum Carter in a small coastal inlet in Dragsfjard, Southwestern Finland. Environ Toxic Water Qual 7:165–170

    CAS  Google Scholar 

  217. Guo MX, Harrison PJ, Taylor FJR (1996) Fish kills related to Prymnesium parvum N. Carter (Haptophyta) in the people’s Republic of China. J Appl Phycol 8:111–117

    Google Scholar 

  218. Watson S (2001) Literature review of the microalga Prymnesium parvum and its associated toxicity. Prepared for the Texas Parks and Wildlife Department. http://www.tpwd.state.tx.us/ landwater/water/environconcerns/hab/ga/literature/. Accessed 22 March 2011

  219. Manning SR, La Claire JW (2010) Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar Drugs 8:678–704

    PubMed  CAS  Google Scholar 

  220. Igarashi T, Satake M, Yasumoto T (1999) Structures and partial stereochemical assignments for Prymnesin-1 and Prymnesin-2: potent hemolytic and ichthyotoxic glycosides isolated from the red tide alga Prymnesium parvum. J Am Chem Soc 121:8499–8511

    CAS  Google Scholar 

  221. Shilo M, Rosenberger M (1960) Studies on the toxic principles formed by the chrysomonad Prymnesium parvum Carter. Ann NY Acad Sci 90:866–876

    CAS  Google Scholar 

  222. Yariv J, Hestrin S (1961) Toxicity of the extracellular phase of Prymnesium parvum cultures. J Gen Microbiol 24:165–175

    PubMed  CAS  Google Scholar 

  223. Ulitzur S, Shilo M (1970) Procedure for purification and separation of Prymnesium parvum toxins. Biochim Biophys Acta 201:350–363

    PubMed  CAS  Google Scholar 

  224. Kozakai H, Oshima Y, Yasumoto T (1982) Isolation and structural elucidation of hemolysin from the phytoflagellate Prymnesium parvum. Agric Biol Chem 46:233–236

    CAS  Google Scholar 

  225. Igarashi T, Satake M, Yasumoto T (1996) Prymnesin-2: a potent ichthyotoxic and hemolytic glycoside isolated from the red tide alga Prymnesium parvum. J Am Chem Soc 118:479–480

    CAS  Google Scholar 

  226. Sasaki M, Shida T, Tachibana K (2001) Synthesis and stereochemical confirmation of the HI/JK ring system of prymnesins, potent hemolytic and ichthyotoxic glycoside toxins isolated from the red tide alga. Tetrahedron Lett 42:5725–5728

    CAS  Google Scholar 

  227. Sasaki M, Ebine M, Takagi H, Takakura H, Shida T, Satake M, Oshima Y, Igarashi T, Yasumoto T (2004) Synthesis of the CDE/FG ring models of prymnesins: reassignment of the relative configuration of the E/F ring juncture. Org Lett 6:1501–1504

    PubMed  CAS  Google Scholar 

  228. Sasaki M, Takeda N, Fuwa H, Watanabe R, Satake M, Oshima Y (2006) Synthesis of the JK/LM-ring model of prymnesins, potent hemolytic and ichthyotoxic polycyclic ethers isolated from the red tide alga Prymnesium parvum: confirmation of the relative configuration of the K/L-ring juncture. Tetrahedron Lett 47:5687–5691

    CAS  Google Scholar 

  229. Morohashi A, Satake M, Oshima Y, Igarashi T, Yasumoto T (2001) Absolute configuration at C14 and C85 in Prymnesin-2, a potent hemolytic and ichthyotoxic glycoside isolated from the red tide alga Prymnesium parvum. Chirality 13:601–605

    PubMed  CAS  Google Scholar 

  230. Paul VJ, Sun HH, Fenical W (1982) Udoteal, a linear diterpenoid feeding deterrent from tropical green alga Udotea flabellum. Phytochem 21:468–469

    CAS  Google Scholar 

  231. Nakatsu T, Ravi BN, Faulkner DJ (1981) Antimicrobial constituents of Udotea flabellum. J Org Chem 46:2435–2538

    CAS  Google Scholar 

  232. Puglisi MP, Tan LT, Jensen P, Fenical W (2004) Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron 60:7035–7039

    CAS  Google Scholar 

  233. Li X-C, Jacob MR, Ding Y, Agarwal AK, Smillie TJ, Khan SI, Nagle DG, Ferreira D, Clark AM (2006) Capisterones A and B, which enhance fluconazole activity in Saccharomyces cerevisiae, from the marine green alga Penicillus capitatus. J Nat Prod 69:542–546

    PubMed  CAS  Google Scholar 

  234. Hogberg HE, Thomason RH, King TJ (1976) The cymopols, a group of prenylated bromohydroquinones from the green calcareous alga Cymopolia barbata. J Chem Soc Per Trans 1(16):1696–1701

    Google Scholar 

  235. Mayer AMS, Paul VJ, Fenical W, Norris JN, de Carvalho MS, Jacobs RS (1993) Phospholipase A2 inhibitors from marine algae. Hydrobiologia 260–261:521–529

    Google Scholar 

  236. McConnell OJ, Hughes PA, Targett NM (1982) Diastereoisomers of cyclocymopol and cyclocymopol monomethyl ether from Cymopolia barbata. Phytochem 21:2139–2141

    CAS  Google Scholar 

  237. McConnell OJ, Hughes PA, Targett NM, Daley J (1982) Effects of secondary metabolites from marine algae on feeding by the sea urchin, Lytechinus variegatus. J Chem Ecol 8:1437–1453

    CAS  Google Scholar 

  238. Wall ME, Wani MC, Manikumar G, Taylor H, Hughes TJ, Gaetano K, Gerwick WH, McPhail AT, McPhail DR (1989) Plant antimutagenic agents, 7. Structure and antimutagenic properties of cymobarbatol and 4-isocymobarbatol, new cymopols from green alga (Cymopolia barbata). J Nat Prod 52:1092–1099

    PubMed  CAS  Google Scholar 

  239. Aguilar-Santos G, Doty MS (1968) Chemical studies on three species of the marine algal genus Caulerpa. In: Freudenthal HD (ed) Drugs from the sea. Marine Technology Society, Washington, DC

    Google Scholar 

  240. Aguilar-Santos G (1970) Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc (C) 6:842–843

    CAS  Google Scholar 

  241. Maiti BC, Thomson RH, Mahendran M (1978) The structure of caulerpin, a pigment from Caulerpa algae. J Chem Res Synop 4:126–127

    Google Scholar 

  242. Raub MF, Cardellina JH II, Schwede JG (1987) The green algal pigment caulerpin as a plant growth regulator. Phytochem 26:619–620

    CAS  Google Scholar 

  243. Liu Y, Morgan JB, Coothankandaswamy V, Liu R, Jekabsons MB, Mahdi F, Nagle DG, Zhou Y-D (2009) The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J Nat Prod 72:2104–2109

    PubMed  CAS  Google Scholar 

  244. de Souza ET, de Lira DP, de Queiroz AC, da Silva DJC, de Aquino AB, Mella EAC, Lorenzo VP, de Miranda GEC, de Araujo-Junior JX, Chaves MCO, Barbosa-Filho JM, de Athayde-Filho PF, Santos BVO, Alexandre-Moreira MS (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704

    PubMed  Google Scholar 

  245. Alarif WM, Abou-Elnaga ZS, Ayyad SN, Al-lihaibi SS (2010) Insecticidal metabolites from the green alga Caulerpa racemosa. Clean: Soil, Air, Water 38:548–557

    CAS  Google Scholar 

  246. Perez-Rodriguez E, Gomez I, Karsten U, Figueroa FL (1998) Effects of UV radiation on Photosynthesis and excretion of UV-absorbing compounds of Dasycladus vermicularis (Dasycladales, Chlorophyta) from Southern Spain. Phycologia 37:379–387

    Google Scholar 

  247. Menzel D, Kazlauskas R, Reichelt J (1983) Coumarins in the siphonalean green algal family Dasycladaceae Kützing (Chlorophyceae). Bot Mar 29:23–29

    Google Scholar 

  248. Baily F, Maurin C, Teissier E, Vezin H, Cotelle P (2004) Antioxidant properties of 3-hydroxycoumarin derivatives. Bioorg Med Chem 12:5611–5618

    Google Scholar 

  249. Ross C, Kupper FC, Vreeland V, Waite JH, Jacobs RS (2005) Evidence of a latent oxidative burst in relation to wound repair in the giant unicellular Chlorophyte Dasycladus vermicularis. J Phycol 41:531–541

    CAS  Google Scholar 

  250. Sun HH, Paul VJ, Fenical W (1983) Avrainvilleol, a brominated diphenylmethane derivative with feeding deterrent properties from the tropical green alga Avrainvillea longicaulis. Phytochem 22:743–745

    CAS  Google Scholar 

  251. Higa T, Scheuer PJ (1975) Constituents of the marine annelid Thelepus setosus. Tetrahedron 31:2379–2381

    CAS  Google Scholar 

  252. Pedersen M (1978) Bromochlorophenols and brominated diphenylmethane in red algae Marianne Pedersen. Phytochem 17:291–293

    CAS  Google Scholar 

  253. Chevolot-Magueur A, Cave A, Potier P, Teste J, Chiaroni A, Riche C (1976) Composés bromés de Rytiphlea tinctoria (Rhodophyceae). Phytochem 15:767–771

    CAS  Google Scholar 

  254. Colon M, Guevara P, Gerwick WH, Ballantine D (1987) 5′-Hydroxyisoavrainvilleol, a new diphenylmethane derivative from the tropical green alga Avrainvillea nigricans. J Nat Prod 50:368–374

    PubMed  CAS  Google Scholar 

  255. Carte BK, Troupe N, Chan JA, Westley JW, Faulkner J (1989) Rawsonol, an inhibitor of HMG-CoA Reductase from the tropical green alga Avrainvillea Rawsonii. Phytochem 28:3917–2919

    Google Scholar 

  256. Chen JL, Gerwick WH, Schatzman R, Laney M (1994) Isorawsonol and related IMP dehydrogenase inhibitors from the tropical green alga Avrainvillea rawsonii. J Nat Prod 57:947–952

    PubMed  CAS  Google Scholar 

  257. Williams DE, Sturgeon CM, Roberge M, Andersen RJ (2007) Nigricanosides A and B, antimitotic glycolipids isolated from the green alga Avrainvillea nigricans collected in Dominica. J Am Chem Soc 129:5822–5823

    PubMed  CAS  Google Scholar 

  258. Gerwick WH, Bernart MW, Moghaddam MF, Jiang JD, Solem ML, Nagle DG (1990) Eicosanoids from the Rhodophyta: a new metabolism in the alga. Hydrobiologia 204(205):621–628

    Google Scholar 

  259. Gerwick WH, Bernart MW (1992) Eicosanoides and related compounds from marine algae. In: Zabonky OR, Attaway DH (eds) Marine biotechnology, Vol I, Pharmaceutical and bioactive natural products. Plenum, New York

    Google Scholar 

  260. Bernart W, Whatley GG, Gerwick WH (1993) Unprecedented oxylipins from the marine green alga Acrosiphonia coalita. J Nat Prod 56:245–259

    PubMed  CAS  Google Scholar 

  261. Gardner HW (1989) Soybean lipoxygenase-1 enzymically forms both (9 S)-and (13 S)-hydroperoxides from linoleic acid by a pH-dependent mechanism. Biochim Biophys Acta 1001:274–281

    PubMed  CAS  Google Scholar 

  262. Irie T, Suzuki T, Yasunari Y, Kurosawa E, Masamune T (1969) Laurene, a sesquiterpene hydrocarbon from Laurencia species. Tetrahedron 25:459–68

    PubMed  CAS  Google Scholar 

  263. Fenical W (1975) Halogenation in the Rhodophyta. J Phycol 11:245–259

    CAS  Google Scholar 

  264. Gribble GW (2008) Structure and biosynthesis of halogenated alkaloids. In: Fattorusso E, Taglialatela-Scafati O (eds) Modern alkaloids, structure, isolation, synthesis and biology. Wiley-VCH Verlang GmbH & Co, Weinheim

    Google Scholar 

  265. Wagner C, El Omari M, Koenig GM (2009) Biohalogenation: nature’s way to synthesize halogenated metabolites. J Nat Prod 72:540–553

    PubMed  CAS  Google Scholar 

  266. Craigie JS, Gruenig DE (1967) Bromophenols from red algae. Science 157:1058–1059

    PubMed  CAS  Google Scholar 

  267. Phillips DW, Towers GHN (1982) Chemical ecology of red algal bromophenols. I. Temporal, interpopulational and within-thallus measurements of lanosol levels in Rhodomela larix (Turner) C. Agardh. J Exp Mar Biol Ecol 58:285–293

    CAS  Google Scholar 

  268. Carlson DJ, Lubchenco J, Sparrow MA, Trowbridge CD (1989) Fine-scale variability of lanosol and its disulfate ester in the temperate red alga Neorhodomela larix. J Chem Ecol 15:1321–1333

    CAS  Google Scholar 

  269. Aknin M, Samb A, Mirailles J, Costantino V, Fattorusso E, Mangoni A (1992) Polysiphenol, a new brominated 9,10-dihydrophenanthrene from the Senegalese red alga Polysiphonia ferulacea. Tetrahedron Lett 33:555–558

    CAS  Google Scholar 

  270. Wiemer DF, Idler DD, Fenical W (1991) Vidalols A and B, new anti-inflammatory bromophenols from the Caribbean marine red alga Vidalia obtusaloba. Experientia 47:851–853

    PubMed  CAS  Google Scholar 

  271. Kazlauskas R, Murphy PT, Wells RJ (1982) A brominated metabolite from the red alga Vidalia spiralis. Australian J Chem 35:219–220

    CAS  Google Scholar 

  272. McConnell OJ, Fenical W (1980) Halogen chemistry of the red alga Bonnemaisonia. Phytochem 19:233–247

    CAS  Google Scholar 

  273. Nylund GM, Cervin G, Persson F, Hermansson M, Steinberg PD, Pavia H (2008) Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonisation. Mar Ecol 369:39–50

    CAS  Google Scholar 

  274. Nylund GM, Persson F, Lindegarth M, Cervin G, Hermansson M, Pavia H (2010) The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defense. FEMS Microbiol Ecol 71:84–93

    PubMed  CAS  Google Scholar 

  275. de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD (2006) Furanones. Progr Mol Subcell Biol 42:55–86

    Google Scholar 

  276. Kugler M (2005) Booster biocides for antifouling products: stricter environmental demands change the market. Chim Oggi 23:10–12

    Google Scholar 

  277. Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M (2005) The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiol 151:3589–3602

    CAS  Google Scholar 

  278. Bernart MW, Gerwick WH, Corcoran EE, Lee AY, Clardy J (1992) Laurencione, a heterocycle from the red alga Laurencia spectabilis. Phytochem 31:1273–1276

    CAS  Google Scholar 

  279. San-Martin A, Rovirosa J, Xu C, Lu HSM, Clardy J (1987) Further structural studies on the 2-methyl-3(2 H)-furanone derived metabolites of the marine alga Laurencia chilensis. Tetrahedron Lett 28:6013–6014

    CAS  Google Scholar 

  280. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in gram-negative bacteria: small molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67

    PubMed  CAS  Google Scholar 

  281. Lowery CA, McKenzie KM, Qi L, Meijler MM, Janda KD (2005) Quorum sensing in Vibrio harveyi: probing the specificity of the LuxP binding site. Bioorg Med Chem Lett 15:2395–2398

    PubMed  CAS  Google Scholar 

  282. Suzuki M, Kurosawa E (1981) Constituents of marine plants. Part 46. Okamurallene, a novel halogenated C15 metabolite from the red alga Laurencia okamurai Yamada. Tetrahedron Lett 22:3853–3856

    CAS  Google Scholar 

  283. Suzuki M, Kondo H, Tanaka I (1991) Constituents of marine plants. 79. The absolute stereochemistry of okamurallene and its congeners, halogenated C15 nonterpenoids from the red alga Laurencia intricata. Chem Lett 1:33–34

    Google Scholar 

  284. Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126:15060–15066

    PubMed  CAS  Google Scholar 

  285. McConnell OJ, Fenical W (1978) Ochtodene and ochtodiol: novel polyhalogenated cyclic monoterpenes from the red seaweed Ochtodes secundiramea. J Org Chem 43:4238–4241

    CAS  Google Scholar 

  286. Paul VJ, Hay ME, Duffy JE, Fenical W, Gustafson K (1988) Chemical defense in the seaweed Ochtodes secundiramea. Effects of its monoterpenoid components upon diverse coral-reef herbivores. J Exp Mar Biol Ecol 114:249–260

    Google Scholar 

  287. Pennings SC, Paul VJ (1993) Sequestration of dietary secondary metabolites by three species of sea hares: location, specificity and dynamics. Mar Biol 117:535–546

    CAS  Google Scholar 

  288. Polzin JJ, Rorrer GL, Cheney DP (2003) Metabolic flux analysis of halogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodes secundiramea. Biomol Eng 20:205–215

    PubMed  CAS  Google Scholar 

  289. Sims JJ, Lin GHY, Wing RM (1974) Marine natural products. X. Elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata. Tetrahedron Lett 39:3487–3490

    Google Scholar 

  290. Brennan MR, Erickson KL, Minott DA, Pascoe KO (1987) Chamigrane metabolites from a Jamaican variety of Laurencia obtusa. Phytochem 26:1053–1057

    CAS  Google Scholar 

  291. Salgado LT, Viana NB, Andrade LR, Leal RN, da Gama BAP, Attias M, Pereira RC, Amado Filho GM (2008) Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J Struct Biol 162:345–355

    PubMed  CAS  Google Scholar 

  292. Vairappan CS, Anangdan SP, Tan KL, Matsunaga S (2010) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305–311

    CAS  Google Scholar 

  293. Dias T, Brito I, Moujir L, Paiz N, Darias J, Cueto M (2005) Cytotoxic sesquiterpenes from Aplysia dactylomela. J Nat Prod 68:1677–1679

    PubMed  CAS  Google Scholar 

  294. Oliveira dos Santos A, Veiga-Santos P, Ueda-Nakamura T, Dias Filho BP, Sudatti DB, Bianco EM, Rcrespo P, Nakamura CV (2010) Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 8:2733–2743

    CAS  Google Scholar 

  295. Kornprobst JM, Al-Easa HS (2003) Brominated diterpenes of marine origin. Curr Org Chem 7:1181–1229

    CAS  Google Scholar 

  296. Kubanek J, Prusak AC, Snell TW, Giese RA, Hardcastle KI, Fairchild CR, Aalbersberg W, Raventos-Suarez C, Hay ME (2005) Antineoplastic diterpene-benzoate macrolides from the Fijian red alga Callophycus serratus. Org Lett 7:5261–5264

    PubMed  CAS  Google Scholar 

  297. Lane AL, Stout EP, Hay ME, Prusak AC, Hardcastle K, Fairchild CR, Franzblau SG, Le Roch K, Prudhomme J, Aalbersberg W, Kubanek J (2007) Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus. J Org Chem 72:7343–7351

    PubMed  CAS  Google Scholar 

  298. Stout EP, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Aalbersberg W, Hay ME, Kubanek J (2010) Unusual antimalarial meroditerpenes from tropical red macroalgae. Bioorg Med Chem Lett 20:5662–5665

    PubMed  CAS  Google Scholar 

  299. Lane AL, Nyadong L, Galhena AS, Shearer TL, Stout EP, Parry RM, Kwasnik M, Wang MD, Hay ME, Fernandez FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Nat Acad Sci USA 106:7314–7319

    PubMed  CAS  Google Scholar 

  300. Blunt JW, Hartshorn MP, McLennan TJ, Munro MHG, Robinson WT, Yorke SC (1978) Thyrsiferol: a squalene-derived metabolite of Laurencia thyrsifera. Tetrahedron Lett 1:69–72

    Google Scholar 

  301. Gonzalez AG, Arteaga JM, Fernandez JJ, Martin JD, Norte M, Ruano JZ (1984) Marine natural products from the Atlantic zone. 39. Terpenoids of the red alga Laurencia pinnatifida. Tetrahedron 40:2751–2755

    CAS  Google Scholar 

  302. Ji NY, Li XM, Xie H, Ding J, Li K, Ding LP, Wang BG (2008) Highly oxygenated triterpenoids from the marine red alga Laurencia mariannensis (rhodomelaceae). Helvetica Chim Acta 91:1940–1946

    CAS  Google Scholar 

  303. Little RD, Nishiguchi GA (2008) Synthetic efforts toward, and biological activity of, thyrsiferol and structurally-related analogues. Stud Nat Prod Chem 35:3–56

    CAS  Google Scholar 

  304. Gerwick WH, Singh IP (2002) Structural diversity of marine oxylipins. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker, New York

    Google Scholar 

  305. Noguchi T, Matsui T, Miyazawa K, Asakawa M, Iijima N, Shida Y, Fuse M, Hosaka Y, Kirigaya C et al (1994) Poisoning by the red alga ‘Ogonori’ (Gracilaria verrucosa) on the Nojima Coast, Yokohama, Kanagawa Prefecture, Japan. Toxicon 32:1533–1538

    PubMed  CAS  Google Scholar 

  306. Gerhart DJ (1984) Prostaglandin A2: an agent of chemical defense in the Caribbean gorgonian Plexaura homomalla. Mar Ecol Prog Ser 19:181–187

    CAS  Google Scholar 

  307. Solem ML, Jiang ZD, Gerwick WH (1989) Three new and bioactive icosanoids from the temperate red marine alga Farlowia mollis. Lipids 24:256–260

    PubMed  CAS  Google Scholar 

  308. Orwig KE, Leers-Sucheta S, Moghaddam MF, Jiang ZD, Gerwick WH, Stormshak F (1992) Unique metabolites of eicosapentaenoic acid interfere with corpus luteum function in the ewe. Prostaglandins 44:519–530

    PubMed  CAS  Google Scholar 

  309. Hamberg M, Gerwick WH (1993) Biosynthesis of vicinal dihydroxy fatty acids in the red alga Gracilariopsis lemaneiformis: Identification of a sodium-dependant 12-lipoxygenase and a hydroperoxide isomerase. Arch Biochem Biophys 305:115–122

    PubMed  CAS  Google Scholar 

  310. Higgs MD, Mulheirn LJ (1981) Hybridalactone, an unusual fatty acid metabolite from the red alga Laurencia hybrida (Rhodophyta, Rhodomelaceae). Tetrahedron 37:4259–4262

    CAS  Google Scholar 

  311. Corey EJ, De B, Ponder JW, Berg JM (1984) The stereochemistry and biosynthesis of hybridalactone, an eicosanoid from Laurencia hybrida. Tetrahedron Lett 25:1015–1018

    CAS  Google Scholar 

  312. Nagle DG, Gerwick WH (1990) Constanolactones A and B, novel cyclopropyl hydroxy eicosanoids from the temperate red alga Constantinea simplex. Tetrahedron Lett 31:2995–2998

    CAS  Google Scholar 

  313. Gerwick WH (1993) Carbocyclic oxylipins of marine origin. Chem Rev 93:1807–1823

    CAS  Google Scholar 

  314. Molinski TF (2010) Microscale methodology for structure elucidation of natural products. Curr Opin Biotechnol 21:819–826

    PubMed  CAS  Google Scholar 

  315. van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  316. Katsaros C, Karyophyllis D, Galatis B (2006) Cytoskeleton and morphogenesis in brown algae. Ann Bot 97:679–693

    PubMed  Google Scholar 

  317. Charrier B, Coelho SM, Le Bail A, Tonon T, Michel G, Potin P, Kloareg B, Boyen C, Peters AF, Cock JM (2008) Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. New Phytol 177:319–332

    PubMed  CAS  Google Scholar 

  318. Cathell MD, Szewczyk JC, Schauer CL (2010) Organic modification of the polysaccharide alginate. Mini-Rev Org Chem 7:61–67

    CAS  Google Scholar 

  319. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotech Lett 32:733–742

    CAS  Google Scholar 

  320. Qin Y (2010) Functional alginate fibers. Chem Fibers Int 60:32–33

    CAS  Google Scholar 

  321. Hara M (1986) Use of alginic acid. Properties and mannuronic acid/guluronic acid ratio of alginic acid. New Food Ind 28:10–14

    CAS  Google Scholar 

  322. Ashton WR (1975) Alginates in the food industry. Afinidad 32:653–658

    CAS  Google Scholar 

  323. Rioux LE, Turgeon SL, Beaulieu M (2010) Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochem 71:1586–1595

    CAS  Google Scholar 

  324. Maeda M, Nishizawa K (1968) Fine structure of laminaran of Eisenia bicyclis. J Biochem 63:199–206

    PubMed  CAS  Google Scholar 

  325. Strain HH, Sherma J (1972) Chloroplast pigments of higher plants, green algae, and brown algae and their influence upon the invention, modifications, and applications of Tswett’s chromatographic method. J Chromatogr 7:371–397

    Google Scholar 

  326. Maier I (1995) Brown algal pheromones. Prog Phycol Res 11:51–102

    CAS  Google Scholar 

  327. Jaenicke L (1977) Sex and sex attraction in seaweed. Trends Biochem Sci 7:152–155

    Google Scholar 

  328. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237

    PubMed  CAS  Google Scholar 

  329. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244

    PubMed  CAS  Google Scholar 

  330. Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301–2317

    PubMed  CAS  Google Scholar 

  331. Abad MJ, Bedoya LM, Bermejo P (2008) Natural marine anti-inflammatory products. Mini-Rev Med Chem 8:740–754

    PubMed  CAS  Google Scholar 

  332. Boland W (1995) The chemistry of gamete attraction: chemical structures, biosynthesis, and biotic degradation of algal pheromones. Proc Natl Acad Sci USA 92:37–43

    PubMed  CAS  Google Scholar 

  333. Mueller DG, Jaenicke L (1973) Fucoserraten, the female sex attractant of Fucus serratus (Phaeophyta). FEBS Lett 30:137–138

    CAS  Google Scholar 

  334. Mueller DG, Gassmann G (1985) Sexual reproduction and the role of sperm attractants in monoecious species of the brown algae order Fucales (Fucus, Hesperophycus, Pelvetia, and Pelvetiopsis). J Plant Physiol 118:401–408

    CAS  Google Scholar 

  335. Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674

    PubMed  CAS  Google Scholar 

  336. Hombeck M, Boland W (1998) Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella formosa (Bacillariophyceae). Tetrahedron 54:11033–11042

    CAS  Google Scholar 

  337. Juettner F, Mueller H (1979) Excretion of octadiene and octatrienes by a freshwater diatom. Naturwissenschaften 66:363–364

    CAS  Google Scholar 

  338. Wendel T, Juettner F (1996) Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochem 41:1445–1449

    CAS  Google Scholar 

  339. Pohnert G, Boland W (1997) Pericyclic reactions in nature: synthesis and Cope rearrangement of thermolabile bis-alkenylcyclopropanes from female gametes of marine brown algae (Phaeophyceae). Tetrahedron 53:13681–13694

    CAS  Google Scholar 

  340. Pohnert G, Boland W (1996) Biosynthesis of the algal pheromone hormosirene by the freshwater diatom Gomphonema parvulum (Bacillariophyceae). Tetrahedron 52:10073–10082

    CAS  Google Scholar 

  341. Boland W, Pohnert G, Maier I (1995) Biosynthesis of algae pheromones. 4. Pericyclic reactions in nature: spontaneous Cope rearrangement inactivates algae pheromones. Angew Chem Int Ed Engl 34:1602–1604

    CAS  Google Scholar 

  342. Mueller DG, Schmid CE (1988) Qualitative and quantitative determination of pheromone secretion in female gametes of Ectocarpus siliculosus (Phaeophyceae). Biol Chem Hoppe-Seyler 369:647–653

    CAS  Google Scholar 

  343. Stratmann K, Boland W, Mueller DG (1993) Biosynthesis of pheromones in female gametes of marine brown algae (Phaeophyceae). Tetrahedron 49:3755–3766

    CAS  Google Scholar 

  344. Stratmann K, Boland W, Mueller DG (1992) Pheromones of marine brown algae: a new branch of eicosanoid metabolism. Angew Chem Int Ed Engl 31:1246–1248

    Google Scholar 

  345. Faulkner DJ (1987) Marine natural products. Nat Prod Rep 4:540–576

    Google Scholar 

  346. Amico V, Currenti R, Oriente G, Piattelli M, Tringali C (1981) A phloroglucinol derivative from the brown alga Zonaria tournefortii. Phytochem 20:1451–1453

    CAS  Google Scholar 

  347. Gerwick W, Fenical W (1982) Phenolic lipids from related marine algae of the order Dictyotales. Phytochem 21:633–637

    CAS  Google Scholar 

  348. Blackman AJ, Rogers GI, Volkman JK (1988) Phloroglucinol derivatives from three Australian marine algae of the genus Zonaria. J Nat Prod 51:158–160

    CAS  Google Scholar 

  349. Munakata T, Ooi T, Kusumi T (1997) A simple preparation of 17 (R)-hydroxyeicosatetraenoic acid and eicosapentaenoic acid from the eicosanoyl phloroglucinols, components of the brown alga, Zonaria diesingiana. Tetrahedron Lett 38:249–250

    Google Scholar 

  350. Wisespongpand P, Kuniyoshi M (2003) Bioactive phloroglucinols from the brown alga Zonaria diesingiana. J Appl Phycol 15:225–228

    CAS  Google Scholar 

  351. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:130–241

    Google Scholar 

  352. Herbert RB (1989) The biosynthesis of secondary metabolites, 2nd edn. Chapman and Hall, London

    Google Scholar 

  353. Hay ME, Fenical W (1988) Marine plant–herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145

    Google Scholar 

  354. Ragan MA (1976) Physodes and the phenolic compounds of brown algae. Composition and significance of physodes in vivo. Bot Mar 19:145–154

    CAS  Google Scholar 

  355. Kaur I, Vijayaraghavan MR (1992) Physode distribution and genesis in Sargassum vulgare (C. Agardh) and Sargassum johnstonii Setchell and Gardner. Aquat Bot 45:375–384

    Google Scholar 

  356. Rosenthal GA, Janzen DH (1979) Herbivores, their interaction with secondary plant metabolites. Academic, New York

    Google Scholar 

  357. Norris JN, Fenical W (1982) Chemical defenses in tropical marine algae. In: Rutzler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize. Smithsonian Contribution to the Marine Sciences. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  358. Bernays EA, Cooper-Driver G, Bilgener M (1989) Herbivores and plant tannins. Adv Ecol Res 19:263–302

    Google Scholar 

  359. Steinberg PD (1992) Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In: Paul VJ (ed) Marine chemical ecology. Cornell, New York

    Google Scholar 

  360. Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146

    CAS  Google Scholar 

  361. Higa T (1981) Phenolic substances. In: Scheuer PJ (ed) Marine natural products, chemical and biological perspective, vol 4. Academic, London

    Google Scholar 

  362. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M (1990) Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome Okamura. Chem Pharm Bull 38:133–135

    PubMed  CAS  Google Scholar 

  363. Glombitza KW, Gerstberger G (1985) Antibiotics from algae. Part 31. Phlorotannins with dibenzodioxin structural elements from the brown alga Eisenia arborea. Phytochem 24:543–551

    CAS  Google Scholar 

  364. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Kido M, Mori H, Nakayama Y, Takahashi M (1989) Anti-plasmin inhibitor. Part III. Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem Pharm Bull 37:349–353

    PubMed  CAS  Google Scholar 

  365. Nakayama Y, Takahashi M, Fukuyama Y, Kinzyo Z (1989) Anti-plasmin inhibitor. Part IV. An anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura. Agric Biol Chem 53:3025–3030

    CAS  Google Scholar 

  366. Fukuyama Y, Miura I, Kinzyo Z, Mori H, Kido M, Nakayama Y, Takahashi M, Ochi M (1985) Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on α-2-macroglobulin from the brown alga Ecklonia kurome Okamura. Chem Lett 6:739–742

    Google Scholar 

  367. Mitani Y, Sakai S (1992) Eckols as tyrosinase inhibitors. Japan Patent 04235110 A 19920824

    Google Scholar 

  368. Shibata T, Nagayama K, Tanaka R, Yamaguchi K, Nakamura T (2003) Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J Appl Phycol 15:61–66

    CAS  Google Scholar 

  369. Shibata T, Fujimoto K, Nagayama K, Yamaguchi K, Nakamura T (2002) Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int J Food Sci Tech 37:703–709

    CAS  Google Scholar 

  370. Ahn MJ, Yoon KD, Min SY, Lee JS, Kim JH, Kim TG, Kim SH, Kim NG, Huh H, Kim J (2004) Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull 27:544–547

    PubMed  CAS  Google Scholar 

  371. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fisheries Sci 62:923–926

    CAS  Google Scholar 

  372. Kim KC, Kang KA, Zhang R, Piao MJ, Kim GY, Kang MY, Lee SJ, Lee NH, Surh YJ, Hyun JW (2010) Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int J Biochem Cell Biol 42:297–305

    PubMed  CAS  Google Scholar 

  373. Glombitza KW, Vogels HP (1985) Antibiotics from algae. XXXV. Phlorotannins from Ecklonia maxima. Planta Med 4:308–312

    Google Scholar 

  374. Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893

    PubMed  CAS  Google Scholar 

  375. Hirschfeld DR, Fenical W, Lin GHY, Wing RM, Radlick P, Sims JJ (1973) Marine natural products. VIII. Pachydictyol A, an exceptional diterpene alcohol from the brown alga, Pachydictyon coriaceum. J Am Chem Soc 95:4049–4050

    CAS  Google Scholar 

  376. Faulker DJ, Ravi BN, Finer J, Clardy J (1977) Diterpenes from Dictyota dichotoma. Phytochem 16:991–993

    Google Scholar 

  377. Hay ME, Duffy JE, Pfister CA (1987) Chemical defense against different marine herbivores: are amphipods insect equivalents? Ecology 68:1567–1580

    CAS  Google Scholar 

  378. Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. BioScience 40:368–375

    Google Scholar 

  379. Gedara SR, Abdel-Halim OB, El-Sharkawy SH, Salama OM, Shier TW, Halim AF (2003) Cytotoxic hydroazulene diterpenes from the brown alga Dictyota dichotoma. Z Naturforsch 58c:17–22

    Google Scholar 

  380. Folmer F, Jaspars M, Dicato M, Diederich M (2010) Photosynthetic marine organisms as a source of anticancer compounds. Phytochem Rev 9:557–579

    CAS  Google Scholar 

  381. Ayyad SEN, Abdel-Halim OB, Shier WT, Hoye TR (2003) Cytotoxic hydroazulene diterpenes from the brown alga Cystoseira myrica. Z Naturforsch 58c:33–38

    Google Scholar 

  382. Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116:693–701

    CAS  Google Scholar 

  383. Finer J, Clardy J, Fenical W, Minale L, Riccio R, Battaile J, Kirkup M, Moore RE (1979) Structures of dictyodial and dictyolactone, unusual marine diterpenes. J Org Chem 44:2044–2047

    CAS  Google Scholar 

  384. Kirkup MP, Moore RE (1983) Two minor diterpenes related to dictyodial A from the brown alga Dictyota crenulata. Phytochem 22:2539–2541

    CAS  Google Scholar 

  385. Siamopoulou P, Bimplakis A, Iliopoulou D, Vagias C, Cos P, Berghe DV, Roussis V (2004) Diterpenes from the brown algae Dictyota dichotoma and Dictyota linearis. Phytochem 65:2025–2030

    CAS  Google Scholar 

  386. Manzo E, Ciavatta ML, Bakkas S, Villani G, Varcamonti M, Zanfardino A, Gavagnin M (2009) Diterpene content of the alga Dictyota ciliolata from a Moroccan lagoon. Phytochem Lett 2:211–215

    CAS  Google Scholar 

  387. Cronin G, Hay ME (1996) Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. haploid stages of the isomorphic brown alga Dictyota ciliata (Phaeophyta). Bot Mar 39:395–399

    CAS  Google Scholar 

  388. Schmitt TM, Lindquist N, Hay ME (1998) Seaweed secondary metabolites as antifoulants. Effects of Dictyota spp. diterpenes on survivorship, settlement, and development of marine invertebrate larvae. Chemoecology 8:125–131

    CAS  Google Scholar 

  389. Ninomya M, Matsuka S, Kawakubo A, Bito N (1995) HIV-1 reverse transcriptase inhibitors containing hydroxydictyodial or dictyodial. Japan Patent 07285877 A 19951031

    Google Scholar 

  390. Sun HH, Ferrara NM, McConnell OJ, Fenical W (1980) Bifurcarenone, an inhibitor of mitotic cell division from the brown alga Bifurcaria galapagensis. Tetrahedron Lett 21:3123–3126

    CAS  Google Scholar 

  391. Mori K, Uno T (1989) Synthesis and structure revision of bifurcarenone, a unique monocyclic diterpene in combination with hydroquinone C7 unit as an inhibitor of mitotic cell division. Tetrahedron 45:1945–1958

    CAS  Google Scholar 

  392. Mori K, Uno T, Kido M (1990) Determination of the absolute configuration of bifurcarenone by the synthesis of its (1’R,2’R)-isomer. Tetrahedron 46:4193–4204

    CAS  Google Scholar 

  393. Amico A (1995) Marine brown algae of family Cystoseiraceae: chemistry and chemotaxonomy. Phytochem 39:1257–1279

    CAS  Google Scholar 

  394. Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48 and references therein

    PubMed  CAS  Google Scholar 

  395. Gerwick WH, Fenical W, Fritsch N, Clardy J (1979) Stypotriol and stypoldione- ichthyotoxins of mixed biogenesis from the marine alga Stypopodium zonale. Tetrahedron Lett 2:145–148

    Google Scholar 

  396. Gerwick WH, Fenical W (1981) Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) Papenfuss. J Org Chem 46:22–27

    CAS  Google Scholar 

  397. Gerwick WH, Fenical W, Norris JN (1985) Chemical variation in the tropical seaweed Stypopodium zonale (Dictyotaceae). Phytochem 24:1279–1283

    CAS  Google Scholar 

  398. Sampli P, Tsitsimpikou C, Vagias C, Harvala C, Roussis V (2000) Schimperiol, a new meroterpenoid from the brown alga Stypopodium schimperi. Nat Prod Lett 14:365–372

    CAS  Google Scholar 

  399. Dorta E, Diaz-Marrero AR, Cueto M, Darias J (2003) On the relative stereochemistry of atomaric acid and related compounds. Tetrahedron 59:2059–2062

    CAS  Google Scholar 

  400. Dorta E, Cueto M, Diaz-Marrero AR, Darias J (2002) Stypolactone, an interesting diterpenoid from the brown alga Stypopodium zonale. Tetrahedron Lett 43:9043–9046

    CAS  Google Scholar 

  401. Depix MS, Martinez J, Santibanez F, Rovirosa J, San Martin A, Maccioni RB (1998) The compound 14-keto-stypodiol diacetate from the algae Stypopodium flabelliforme inhibits microtubules and cell proliferation in DU-145 human prostatic cells. Mol Cell Biochem 187:191–199

    PubMed  CAS  Google Scholar 

  402. O’Brien ET, White S, Jacobs RS, Boder GB, Wilson L (1984) Pharmacological properties of a marine natural product, stypoldione, obtained from the brown alga Stypopodium zonale. Hydrobiologia 116–117:141–145

    Google Scholar 

  403. White SJ, Jacobs RS (1983) Effect of stypoldione on cell-cycle progression, DNA and protein synthesis, and cell division in cultured sea-urchin embryos. Mol Pharmacol 24:500–508

    PubMed  CAS  Google Scholar 

  404. Martinez JL, Sepulveda SP, Rovirosa J, San Martin A (1997) Effects in rat isolated aortic ring and atrium of diacetyl epitaondiol, diterpenoid from Stypopodium flabelliforme algae. An Asoc Quim Argent 85:69–75

    CAS  Google Scholar 

  405. Wessels M, Koenig GM, Wright AD (1999) A new tyrosine kinase inhibitor from the marine brown alga Stypopodium zonale. J Nat Prod 62:927–930

    PubMed  CAS  Google Scholar 

  406. Rovirosa J, Sepulveda M, Quezada E, San-Martin A (1992) Isoepitaondiol, a diterpenoid of Stypopodium flabelliforme and the insecticidal activity of stypotriol, epitaondiol and derivatives. Phytochem 31:2679–2681

    CAS  Google Scholar 

  407. Sabry OMM, Andrews S, McPhail KL, Goeger DE, Yokochi A, LePage KT, Murray TF, Gerwick WH (2005) Neurotoxic meroditerpenoids from the tropical marine brown alga Stypopodium flabelliforme. J Nat Prod 68:1022–1030

    PubMed  CAS  Google Scholar 

  408. Sanchez-Ferrando F, San-Martin A (1995) Epitaondiol: the first polycyclic meroditerpenoid containing two fused six-membered rings forced into the twist-boat conformation. J Org Chem 60:1475–1478

    CAS  Google Scholar 

  409. Kurata K, Taniguchi K, Shiraishi K, Hayama N, Tanaka I, Suzuki M (1989) Ecklonialactone A and B, two unusual metabolites from the brown alga Ecklonia stolonifera Okamura. Chem Lett 2:267–270

    Google Scholar 

  410. Kurata K, Taniguchi K, Shiraishi K, Suzuki M (1993) Ecklonialactones C-F from the brown alga Ecklonia stolonifera. Phytochem 33:155–159

    CAS  Google Scholar 

  411. Todd JS, Proteau PJ, Gerwick WH (1994) The absolute configuration of ecklonialactones A, B, and E, novel oxylipins from brown algae of the genera Eckonia and Egregia. J Nat Prod 57:171–174

    PubMed  CAS  Google Scholar 

  412. Todd JS, Proteau PJ, Gerwick WH (1993) Egregiachlorides A-C: new chlorinated oxylipins from the marine brown alga Egregia menziesii. Tetrahedron Lett 34:7689–7692

    CAS  Google Scholar 

  413. Kousaka K, Ogi N, Akazawa Y, Fujieda M, Yamamoto Y, Takada Y, Kimura J (2003) Novel oxylipin metabolites from the brown alga Eisenia bicyclis. J Nat Prod 66:1318–1323

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukjae Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Choi, H., Pereira, A.R., Gerwick, W.H. (2012). The Chemistry of Marine Algae and Cyanobacteria. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_2

Download citation

Publish with us

Policies and ethics