Skip to main content

Mechanisms of Halogenation of Marine Secondary Metabolites

  • Reference work entry
  • First Online:

Abstract

Chemical halogenation often requires harsh reaction conditions and results in unwanted by-product formation. It is thus of great interest to investigate the biosynthesis of halogenated natural products and the biotechnological potential of halogenating enzymes. Most of the biogenic organohalogens known today are marine-derived and often proposed to serve as antifeedant and antibacterial defense agents; however, knowledge on biological halogenation in marine organisms still is very limited. Today, mainly vanadate-depending haloperoxidases (Va-HPO) and nonheme FeII/α-ketoglutarate/O2-dependent halogenases are described for secondary metabolite biosynthesis in marine organisms. Beyond that, also enzymes utilizing S-adenosyl-l-methionine in halogen transfer are found in marine environments. This review aims to give a comprehensive overview on the different strategies used by nature to incorporate halogens into secondary metabolites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297

    PubMed  CAS  Google Scholar 

  2. Anderson JLR, Chapman SK (2006) Molecular mechanisms of enzyme-catalysed halogenation. Mol Biosyst 2:350–357

    PubMed  CAS  Google Scholar 

  3. Vetter W (2006) Marine halpgenated natural products. Rev Environ Contam Toxicol 188:1–57

    PubMed  CAS  Google Scholar 

  4. Kulik HJ, Blasiak LC, Marzari N, Drennan CL (2009) First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity. J Am Chem Soc 131:14426–14433

    PubMed  CAS  Google Scholar 

  5. Naismith JH (2006) Inferring the chemical mechanism from structures of enzymes. Chem Soc Rev 35:763–770

    PubMed  CAS  Google Scholar 

  6. Eustáquio AS, Pojer F, Noel JP, Moore BS (2008) Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat Chem Biol 4:69–74

    PubMed  Google Scholar 

  7. Dong CJ, Deng H, Dorward M, Schaffrath C, O’Hagan D, Naismith JH (2003) Crystallization and X-ray diffraction of 5'-fluoro-5′-deoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya. Acta Crystallogr D Biol Crystallogr 59:2292–2293

    PubMed  Google Scholar 

  8. Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21:180–188

    PubMed  CAS  Google Scholar 

  9. van Pée KH (1990) Bacterial haloperoxidases and their role in secondary metabolism. Biotechnol Adv 8:185–205

    PubMed  Google Scholar 

  10. Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288

    PubMed  CAS  Google Scholar 

  11. Ballschmiter K (2003) Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 52:313–324

    PubMed  CAS  Google Scholar 

  12. Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, Van Dorsselaer A, Kloareg B, Potin P (2003) The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities. J Biol Chem 278:23545–23552

    PubMed  CAS  Google Scholar 

  13. Morris DR, Hager LP (1966) Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241:1763–1768

    PubMed  CAS  Google Scholar 

  14. Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93:1937–1944

    CAS  Google Scholar 

  15. Sanfilippo C, D’Antona N, Nicolosi G (2004) Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett 26:1815–1819

    PubMed  CAS  Google Scholar 

  16. Spreti N, Germani R, Incani A, Savelli G (2004) Stabilization of chloroperoxidase by polyethylene glycols in aqueous media: kinetic studies and synthetic applications. Biotechnol Prog 20:96–101

    PubMed  CAS  Google Scholar 

  17. Yi XW, Conesa A, Punt PJ, Hager LP (2003) Examining the role of glutamic acid 183 in chloroperoxidase catalysis. J Biol Chem 278:13855–13859

    PubMed  CAS  Google Scholar 

  18. Baciocchi E, Fabbrini M, Lanzalunga O, Manduchi L, Pochetti G (2001) Prochiral selectivity in H(2)O(2)-promoted oxidation of arylalkanols catalysed by chloroperoxidase. The role of the interactions between the OH group and the amino-acid residues in the enzyme active site. Eur J Biochem 268:665–672

    PubMed  CAS  Google Scholar 

  19. Sundaramoorthy M, Terner J, Poulos TL (1998) Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem Biol 5:461–473

    PubMed  CAS  Google Scholar 

  20. Manoj KM (2006) Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochim Biophys Acta, Proteins Proteomics 1764:1325–1339

    CAS  Google Scholar 

  21. Osborne RL, Raner GM, Hager LP, Dawson JH (2006) C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. J Am Chem Soc 128:1036–1037

    PubMed  CAS  Google Scholar 

  22. Carter-Franklin JN, Parrish JD, Tschirret-Guth RA, Little RD, Butler A (2003) Vanadium haloperoxidase-catalyzed bromination and cyclization of terpenes. J Am Chem Soc 125:3688–3689

    PubMed  CAS  Google Scholar 

  23. Wever R, Hemrika W (2001) Vanadium haloperoxidases. In: Messerschmidt A, Huber R, Wieghardt K, Poulos T (eds) Handbook of metalloproteins. Wiley, Chichester, pp 1417–1428

    Google Scholar 

  24. Messerschmidt A, Wever R (1996) X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. Proc Natl Acad Sci USA 93:392–396

    PubMed  CAS  Google Scholar 

  25. Weyand M, Hecht HJ, Kiess M, Liaud MF, Vilter H, Schomburg D (1999) X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 Å resolution. J Mol Biol 293:595–611

    PubMed  CAS  Google Scholar 

  26. Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN, Littlechild JA (2000) Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. J Mol Biol 299:1035–1049

    PubMed  CAS  Google Scholar 

  27. Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126:15060–15066

    PubMed  CAS  Google Scholar 

  28. Martinez JS, Carroll GL, Tschirret-Guth RA, Altenhoff G, Little RD, Butler A (2001) On the regiospecificity of vanadium bromoperoxidase. J Am Chem Soc 123:3289–3294

    PubMed  CAS  Google Scholar 

  29. Vilter H (1984) Peroxidases from Phaeophyceae – a vanadium(V)-dependent peroxidase from Ascophyllum nodosum. Phytochemistry 23:1387–1390

    CAS  Google Scholar 

  30. Plat H, Krenn BE, Wever R (1987) The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme. Biochem J 248:277–279

    PubMed  CAS  Google Scholar 

  31. Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284:18577–18581

    PubMed  CAS  Google Scholar 

  32. Winter JM, Moffitt MC, Zazopoulos E, McAlpine JB, Dorrestein PC, Moore BS (2007) Molecular basis for chloronium-mediated meroterpene cyclization – cloning, sequencing, and heterologous expression of the napyradiomycin biosynthetic gene cluster. J Biol Chem 282:16362–16368

    PubMed  CAS  Google Scholar 

  33. Soedjak HS, Butler A (1990) Characterization of vanadium bromoperoxidase from macrocystis and fucus – reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines. Biochemistry 29:7974–7981

    PubMed  CAS  Google Scholar 

  34. Hasan Z, Renirie R, Kerkman R, Ruijssenaars HJ, Hartog AF, Wever R (2006) Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: catalytic effects from first and second coordination sphere mutations. J Biol Chem 281:9738–9744

    PubMed  CAS  Google Scholar 

  35. Coupe EE, Smyth MG, Fosberry A, Hall RM, Littlechild JA (2007) The dodecameric vanadium-dependent haloperoxidase from the marine algae Corallina officinalis: cloning, expression, and refolding of the recombinant enzyme. Protein Expr Purif 52:265–272

    PubMed  CAS  Google Scholar 

  36. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179

    PubMed  CAS  Google Scholar 

  37. Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fievet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88:1773–1785

    PubMed  CAS  Google Scholar 

  38. Cosse A, Potin P, Leblanc C (2009) Patterns of gene expression induced by oligoguluronates reveal conserved and environment-specific molecular defense responses in the brown alga Laminaria digitata. New Phytol 182:239–250

    PubMed  CAS  Google Scholar 

  39. Krebs C, Galonic FD, Walsh CT, Bollinger JM Jr (2007) Non-heme Fe(IV)-oxo intermediates. Acc Chem Res 40:484–492

    PubMed  CAS  Google Scholar 

  40. Vaillancourt FH, Yin J, Walsh CT (2005) SyrB2 in syringomycin E biosynthesis is a nonheme Fe-II α-ketoglutarate- and O2-dependent halogenase. Proc Natl Acad Sci USA 102:10111–10116

    PubMed  CAS  Google Scholar 

  41. Vaillancourt FH, Vosburg DA, Walsh CT (2006) Dichlorination and bromination of a threonyl-S-carrier protein by the non-heme Fe(II) halogenase SyrB2. Chembiochem 7:748–752

    PubMed  CAS  Google Scholar 

  42. Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL (2006) Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440:368–371

    PubMed  CAS  Google Scholar 

  43. Straganz GD, Nidetzky B (2006) Variations of the 2-His-1-carboxylate theme in mononudear non-heme Fe-II oxygenases. Chembiochem 7:1536–1548

    PubMed  CAS  Google Scholar 

  44. de Visser SP, Latifi R (2009) Carbon dioxide: a waste product in the catalytic cycle of α-ketoglutarate dependent halogenases prevents the formation of hydroxylated by-products. J Phys Chem B 113:12–14

    PubMed  Google Scholar 

  45. Wong C, Fujimori DG, Walsh CT, Drennan CL (2009) Structural analysis of an open active site conformation of nonheme iron halogenase CytC3. J Am Chem Soc 131:4872–4879

    PubMed  CAS  Google Scholar 

  46. Matthews ML, Neumann CS, Miles LA, Grove TL, Booker SJ, Krebs C, Walsh CT, Bollinger JM Jr (2009) Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc Natl Acad Sci USA 106:17723–17728

    PubMed  CAS  Google Scholar 

  47. Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM (2009) Substrate-triggered formation and remarkable stability of the C-H bond-cleaving chloroferryl intermediate in the aliphatic halogenase, SyrB2. Biochemistry 48:4331–4343

    PubMed  CAS  Google Scholar 

  48. Flatt PM, O’Connell SJ, McPhail KL, Zeller G, Willis CL, Sherman DH, Gerwick WH (2006) Characterization of the initial enzymatic steps of barbamide biosynthesis. J Nat Prod 69:938–944

    PubMed  CAS  Google Scholar 

  49. Chang Z, Flatt P, Gerwick WH, Nguyen VA, Willis CL, Sherman DH (2002) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296:235–247

    PubMed  CAS  Google Scholar 

  50. Ridley CP, Bergquist PR, Harper MK, Faulkner DJ, Hooper JNA, Haygood MG (2005) Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem Biol 12:397–406

    PubMed  CAS  Google Scholar 

  51. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833

    PubMed  CAS  Google Scholar 

  52. Gu L, Wang B, Kulkarni A, Geders TW, Grindberg RV, Gerwick L, Håkansson K, Wipf P, Smith JL, Gerwick WH, Sherman DH (2009) Metamorphic enzyme assembly in polyketide diversification. Nature 459:731–735

    PubMed  CAS  Google Scholar 

  53. Balunas MJ, Linington RG, Tidgewell K, Fenner AM, Urena LD, Togna GD, Kyle DE, Gerwick WH (2010) Dragonamide E, a modified linear lipopeptide from Lyngbya majuscula with antileishmanial activity. J Nat Prod 73:60–66

    PubMed  CAS  Google Scholar 

  54. Jimenez JI, Scheuer PJ (2001) New lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 64:200–203

    PubMed  CAS  Google Scholar 

  55. Ueki M, Galonic DP, Vaillancourt FH, Garneau-Tsodikova S, Yeh E, Vosburg DA, Schroeder FC, Osada H, Walsh CT (2006) Enzymatic generation of the antimetabolite γ, γ-dichloroaminobutyrate by NRPS and mononuclear iron halogenase action in a streptomycete. Chem Biol 13:1183–1191

    PubMed  CAS  Google Scholar 

  56. Galonic DP, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nat Chem Biol 3:113–116

    PubMed  CAS  Google Scholar 

  57. Vaillancourt FH, Yeh E, Vosburg DA, O’Connor SE, Walsh CT (2005) Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436:1191–1194

    PubMed  CAS  Google Scholar 

  58. Kelly WL, Boyne MT, Yeh E, Vosburg DA, Galonic DP, Kelleher NL, Walsh CT (2007) Characterization of the aminocarboxycyclopropane-forming enzyme CmaC. Biochemistry 46:359–368

    PubMed  CAS  Google Scholar 

  59. Hammer PE, Hill DS, Lam ST, van Pée KH, Ligon JM (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63:2147–2154

    PubMed  CAS  Google Scholar 

  60. Dairi T, Nakano T, Aisaka K, Katsumata R, Hasegawa M (1995) Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci Biotechnol Biochem 59:1099–1106

    PubMed  CAS  Google Scholar 

  61. Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pée KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943

    PubMed  CAS  Google Scholar 

  62. Hohaus K, Altmann A, Burd W, Fischer I, Hammer PE, Hill DS, Ligon JM, van Pée KH (1997) NADH-abhängige Halogenasen sind wahrscheinlich eher an der Biosynthese von Halometaboliten beteiligt als Haloperoxidasen. Angew Chem 109:2102–2104

    Google Scholar 

  63. Hölzer M, Burd W, Reißig H-U, van Pée KH (2001) Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas fluorescens BL915. Adv Synth Catal 343:591–595

    Google Scholar 

  64. van Pée KH (2001) Microbial biosynthesis of halometabolites. Arch Microbiol 175:250–258

    PubMed  Google Scholar 

  65. Keller S, Wage T, Hohaus K, Hölzer M, Eichhorn E, van Pée KH (2000) Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens. Angew Chem Int Ed Engl 39:2300–2302

    PubMed  CAS  Google Scholar 

  66. Unversucht S, Hollmann F, Schmid A, van Pée KH (2005) FADH(2)-dependence of tryptophan 7-halogenase. Adv Synth Catal 347:1163–1167

    CAS  Google Scholar 

  67. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, Deboy RT, Seshadri R, Ren QH, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou LW, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    PubMed  CAS  Google Scholar 

  68. van Pée KH, Dong CJ, Flecks S, Naismith J, Patallo EP, Wage T (2006) Biological halogenation has moved far beyond haloperoxidases. Adv Appl Microbiol 59:127–157

    PubMed  Google Scholar 

  69. Dong C, Kotzsch A, Dorward M, van Pée KH, Naismith JH (2004) Crystallization and X-ray diffraction of a halogenating enzyme, tryptophan 7-halogenase, from Pseudomonas fluorescens. Acta Crystallogr D Biol Crystallogr 60:1438–1440

    PubMed  Google Scholar 

  70. Dong CJ, Flecks S, Unversucht S, Haupt C, van Pée KH, Naismith JH (2005) Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 309:2216–2219

    PubMed  CAS  Google Scholar 

  71. Seibold C, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C, Wage T, Ernyei AJ, Dong CJ, Naismith JH, van Pée KH (2006) A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis. Biocatal Biotransform 24:401–408

    CAS  Google Scholar 

  72. Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531

    PubMed  Google Scholar 

  73. Onaka H, Taniguchi S, Igarashi Y, Furumai T (2003) Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem 67:127–138

    PubMed  CAS  Google Scholar 

  74. Yeh E, Garneau S, Walsh CT (2005) Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc Natl Acad Sci USA 102:3960–3965

    PubMed  CAS  Google Scholar 

  75. Yeh E, Cole LJ, Barr EW, Bollinger JM, Ballou DP, Walsh CT (2006) Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Biochemistry 45:7904–7912

    PubMed  CAS  Google Scholar 

  76. Yeh E, Blasiak LC, Koglin A, Drennan CL, Walsh CT (2007) Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 46:1284–1292

    PubMed  CAS  Google Scholar 

  77. Zehner S, Kotzsch A, Bister B, Süssmuth RD, Méndez C, Salas JA, van Pée KH (2005) A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem Biol 12:445–452

    PubMed  CAS  Google Scholar 

  78. Zhu XF, De Laurentis W, Leang K, Herrmann J, Lhiefeld K, van Pée KH, Naismith JH (2009) Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J Mol Biol 391:74–85

    PubMed  CAS  Google Scholar 

  79. Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie TM, Blöcker H, Müller R (2006) Molecular and biochemical studies of chondramide formation – highly cytotoxic natural products from Chondromyces crocatus Cm c5. Chem Biol 13:667–681

    PubMed  CAS  Google Scholar 

  80. Chiu HT, Hubbard BK, Shah AN, Eide J, Fredenburg RA, Walsh CT, Khosla C (2001) Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci USA 98:8548–8553

    PubMed  CAS  Google Scholar 

  81. Puk O, Bischoff D, Kittel C, Pelzer S, Weist S, Stegmann E, Süssmuth RD, Wohlleben W (2004) Biosynthesis of chloro-β-hydroxytyrosine, a nonproteinogenic amino acid of the peptidic backbone of glycopeptide antibiotics. J Bacteriol 186:6093–6100

    PubMed  CAS  Google Scholar 

  82. Dorrestein PC, Yeh E, Garneau-Tsodikova S, Kelleher NL, Walsh CT (2005) Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc Natl Acad Sci USA 102:13843–13848

    PubMed  CAS  Google Scholar 

  83. Piraee M, White RL, Vining LC (2004) Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230: genes required for halogenation. Microbiology 150:85–94

    PubMed  CAS  Google Scholar 

  84. Pacholec M, Sello JK, Walsh CT, Thomas MG (2007) Formation of an aminoacyl-S-enzyme intermediate is a key step in the biosynthesis of chloramphenicol. Org Biomol Chem 5:1692–1694

    PubMed  CAS  Google Scholar 

  85. Kling E, Schmid C, Unversucht S, Wage T, Zehner S, van Pée KH (2005) Enzymatic incorporation of halogen atoms into natural compounds. Ernst Schering Res Found Workshop 51:165–194

    CAS  Google Scholar 

  86. Latimer R, Podzelinska K, Soares A, Bhattacharya A, Vining LC, Jia ZC, Zechel DL (2009) Expression, purification and preliminary diffraction studies of CmlS. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:260–263

    PubMed  Google Scholar 

  87. Podzelinska K, Latimer R, Bhattacharya A, Vining LC, Zechel DL, Jia ZC (2010) Chloramphenicol biosynthesis: the structure of CmIS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. J Mol Biol 397:316–331

    PubMed  CAS  Google Scholar 

  88. Buedenbender S, Rachid S, Müller R, Schulz GE (2009) Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases. J Mol Biol 385:520–530

    PubMed  CAS  Google Scholar 

  89. van Pée KH, Salcher O, Fischer P, Bokel M, Lingens F (1983) The biosynthesis of brominated pyrrolnitrin derivatives by Pseudomonas aureofaciens. J Antibiot 36:1735–1742

    PubMed  Google Scholar 

  90. Smith CG (1958) Effect of halogens on the chloramphenicol fermentation. J Bacteriol 75:577–583

    PubMed  CAS  Google Scholar 

  91. Doerschuk AP, Mccormick JRD, Goodman JJ, Szumski SA, Growich JA, Miller PA, Bitler BA, Jensen ER, Matrishin M, Petty MA, Phelps AS (1959) Biosynthesis of tetracyclines.1. The halide metabolism of Streptomyces aureofaciens mutants – The preparation and characterization of tetracycline, 7-chloro36-tetracycline and 7-bromotetracycline. J Am Chem Soc 81:3069–3075

    CAS  Google Scholar 

  92. Bister B, Bischoff D, Nicholson GJ, Stockert S, Wink J, Brunati C, Donadio S, Pelzer S, Wohlleben W, Sussmuth RD (2003) Bromobalhimycin and chlorobromobalhimycins - Illuminating the potential of halogenases in glycopeptide antibiotic biosyntheses. Chembiochem 4:658–662

    PubMed  CAS  Google Scholar 

  93. Stander MA, Steyn PS, Lübben A, Miljkovic A, Mantle PG, Marais GJ (2000) Influence of halogen salts on the production of the ochratoxins by Aspergillus ochraceus Wilh. J Agric Food Chem 48:1865–1871

    PubMed  CAS  Google Scholar 

  94. Magarvey NA, Beck ZQ, Golakoti T, Ding YS, Huber U, Hemscheidt TK, Abelson D, Moore RE, Sherman DH (2006) Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from Nostoc cyanobionts. ACS Chem Biol 1:766–779

    PubMed  CAS  Google Scholar 

  95. Eustáquio AS, Gust B, Luft T, Li SM, Chater KF, Heide L (2003) Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. Chem Biol 10:279–288

    PubMed  Google Scholar 

  96. Eustáquio AS, Gust B, Li SM, Pelzer S, Wohlleben W, Chater KF, Heide L (2004) Production of 8′-halogenated and 8′-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11:1561–1572

    PubMed  Google Scholar 

  97. Wolpert M, Heide L, Kammerer B, Gust B (2008) Assembly and heterologous expression of the coumermycin A1 gene cluster and production of new derivatives by genetic engineering. Chembiochem 9:603–612

    PubMed  CAS  Google Scholar 

  98. Heide L, Westrich L, Anderle C, Gust B, Kammerer B, Piel J (2008) Use of a halogenase of hormaomycin biosynthesis for formation of new clorobiocin analogues with 5-chloropyrrole moieties. Chembiochem 9:1992–1999

    PubMed  CAS  Google Scholar 

  99. Akinaga S, Sugiyama K, Akiyama T (2000) UCN-01 (7-hydroxystaurosporine) and other indolocarbazole compounds: a new generation of anti-cancer agents for the new century? Anticancer Drug Des 15:43–52

    PubMed  CAS  Google Scholar 

  100. Sánchez C, Zhu LL, Braña AF, Salas AP, Rohr J, Méndez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci USA 102:461–466

    PubMed  Google Scholar 

  101. Muffler K, Retzlaff M, van Pée KH, Ulber R (2007) Optimisation of halogenase enzyme activity by application of a genetic algorithm. J Biotechnol 127:425–433

    PubMed  CAS  Google Scholar 

  102. Muffler K, Ngnigha ARK, Ulber R (2010) Determination of kinetic parameters of the FADH(2)-dependent tryptophan-5-halogenases from Streptomyces rugosporus. Chem Ing Tech 82:121–127

    CAS  Google Scholar 

  103. Dong CJ, Huang FL, Deng H, Schaffrath C, Spencer JB, O’Hagan D, Naismith JH (2004) Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427:561–565

    PubMed  CAS  Google Scholar 

  104. Beer LL, Moore BS (2007) Biosynthetic convergence of salinosporamides A and B in the marine actinomycete Salinispora tropica. Org Lett 9:845–848

    PubMed  CAS  Google Scholar 

  105. Eustáquio AS, McGlinchey RP, Liu Y, Hazzard C, Beer LL, Florova G, Alhamadsheh MM, Lechner A, Kale AJ, Kobayashi Y, Reynolds KA, Moore BS (2009) Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-L-methionine. Proc Natl Acad Sci USA 106:12295–12300

    PubMed  Google Scholar 

  106. Eustâquio AS, O’Hagan D, Moore BS (2010) Engineering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide. J Nat Prod 73:378–382

    PubMed  Google Scholar 

  107. Eustáquio AS, Moore BS (2008) Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew Chem Int Ed Engl 47:3936–3938

    PubMed  Google Scholar 

  108. Deng H, Cross SM, McGlinchey RP, Hamilton JT, O’Hagan D (2008) In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase. Chem Biol 15:1268–1276

    PubMed  CAS  Google Scholar 

  109. Harper DB (1985) Halomethane from halide ion – A highly efficient fungal conversion of environmental significance. Nature 315:55–57

    CAS  Google Scholar 

  110. Wuosmaa AM, Hager LP (1990) Methyl chloride transferase – A carbocation route for biosynthesis of halometabolites. Science 249:160–162

    PubMed  CAS  Google Scholar 

  111. Ohsawa N, Tsujita M, Morikawa S, Itoh N (2001) Purification and characterization of a monohalomethane-producing enzyme S-adenosyl-L-methionine: halide ion methyltransferase from a marine microalga, Pavlova pinguis. Biosci Biotechnol Biochem 65:2397–2404

    PubMed  CAS  Google Scholar 

  112. Amachi S, Kamagata Y, Kanagawa T, Muramatsu Y (2001) Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol 67:2718–2722

    PubMed  CAS  Google Scholar 

  113. Saxena D, Aouad S, Attieh J, Saini HS (1998) Biochemical characterization of chloromethane emission from the wood-rotting fungus Phellinus pomaceus. Appl Environ Microbiol 64:2831–2835

    PubMed  CAS  Google Scholar 

  114. van Pée KH (1996) Biosynthesis of halogenated metabolites by bacteria. Annu Rev Microbiol 50:375–399

    PubMed  Google Scholar 

  115. Murphy CD (2006) Recent developments in enzymatic chlorination. Nat Prod Rep 23:147–152

    PubMed  CAS  Google Scholar 

  116. Reed KA, Manam RR, Mitchell SS, Xu JL, Teisan S, Chao TH, Deyanat-Yazdi G, Neuteboom STC, Lam KS, Potts BCM (2007) Salinosporamides D-J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome. J Nat Prod 70:269–276

    PubMed  CAS  Google Scholar 

  117. Blasiak LC, Drennan CL (2009) Structural perspective on enzymatic halogenation. Acc Chem Res 42:147–155

    PubMed  CAS  Google Scholar 

  118. Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99–109

    PubMed  CAS  Google Scholar 

  119. Chen X, van Pée KH (2008) Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim Biophys Sin (Shanghai) 40:183–193

    CAS  Google Scholar 

  120. van Pée KH, Patallo EP (2006) Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol 70:631–641

    PubMed  Google Scholar 

  121. van Pée KH, Hölzer M (1999) Specific enzymatic chlorination of tryptophan and tryptophan derivatives. Adv Exp Med Biol 467:603–609

    PubMed  Google Scholar 

  122. Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT (2006) Nature’s inventory of halogenation catalysts: oxidative strategies predominate. Chem Rev 106:3364–3378

    PubMed  CAS  Google Scholar 

  123. Fujimori DG, Walsh CT (2007) What’s new in enzymatic halogenations. Curr Opin Chem Biol 11:553–560

    PubMed  CAS  Google Scholar 

  124. Dolfing J (1998) Halogenation of aromatic compounds: thermodynamic, mechanistic and ecological aspects. FEMS Microbiol Lett 167:271–274

    PubMed  CAS  Google Scholar 

  125. Raugei S, Carloni P (2006) Structure and function of vanadium haloperoxidases. J Phys Chem B 110:3747–3758

    PubMed  CAS  Google Scholar 

  126. Bortolini O, Conte V (2005) Vanadium (V) peroxocomplexes: structure, chemistry and biological implications. J Inorg Biochem 99:1549–1557

    PubMed  CAS  Google Scholar 

  127. Guenzi E, Galli G, Grgurina I, Gross DC, Grandi G (1998) Characterization of the syringomycin synthetase gene cluster – A link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem 273:32857–32863

    PubMed  CAS  Google Scholar 

  128. Zhang JH, Quigley NB, Gross DC (1995) Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism. J Bacteriol 177:4009–4020

    PubMed  CAS  Google Scholar 

  129. Galonic DP, Vaillancourt FH, Walsh CT (2006) Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J Am Chem Soc 128:3900–3901

    PubMed  CAS  Google Scholar 

  130. Ramaswamy AV, Sorrels CM, Gerwick WH (2007) Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:1977–1986

    PubMed  CAS  Google Scholar 

  131. Ullrich M, Guenzi AC, Mitchell RE, Bender CL (1994) Cloning and expression of genes required for coronamic acid (2-ethyl-1-aminocyclopropane 1-carboxylic acid), an intermediate in the biosynthesis of the phytotoxin coronatine. Appl Environ Microbiol 60:2890–2897

    PubMed  CAS  Google Scholar 

  132. Fujimori DG, Hrvatin S, Neumann CS, Strieker M, Marahiel MA, Walsh CT (2007) Cloning and characterization of the biosynthetic gene cluster for kutznerides. Proc Natl Acad Sci USA 104:16498–16503

    PubMed  Google Scholar 

  133. Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367

    PubMed  CAS  Google Scholar 

  134. Flatt P, Gautschi J, Thacker R, Musafija-Girt M, Crews P, Gerwick W (2005) Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Mar Biol 147:761–774

    CAS  Google Scholar 

  135. Gao Q, Zhang C, Blanchard S, Thorson JS (2006) Deciphering indolocarbazole and enediyne aminodideoxypentose biosynthesis through comparative genomics: insights from the AT2433 biosynthetic locus. Chem Biol 13:733–743

    PubMed  CAS  Google Scholar 

  136. Heemstra JR Jr, Walsh CT (2008) Tandem action of the O2- and FADH2-dependent halogenases KtzQ and KtzR produce 6,7-dichlorotryptophan for kutzneride assembly. J Am Chem Soc 130:14024–14025

    PubMed  CAS  Google Scholar 

  137. Zerbe K, Pylypenko O, Vitali F, Zhang W, Rouset S, Heck M, Vrijbloed JW, Bischoff D, Bister B, Süssmuth RD, Pelzer S, Wohlleben W, Robinson JA, Schlichting I (2002) Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J Biol Chem 277:47476–47485

    PubMed  CAS  Google Scholar 

  138. Pelzer S, Süssmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    PubMed  CAS  Google Scholar 

  139. Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102

    PubMed  CAS  Google Scholar 

  140. Sosio M, Stinchi S, Beltrametti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549

    PubMed  CAS  Google Scholar 

  141. Rouhiainen L, Paulin L, Suomalainen S, Hyytiainen H, Buikema W, Haselkorn R, Sivonen K (2000) Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37:156–167

    PubMed  CAS  Google Scholar 

  142. Tooming-Klunderud A, Rohrlack T, Shalchian-Tabrizi K, Kristensen T, Jakobsen KS (2007) Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from Microcystis: implications for evolution of cyanopeptolins. Microbiology 153:1382–1393

    PubMed  CAS  Google Scholar 

  143. Cadel-Six S, Dauga C, Castets AM, Rippka R, Bouchier C, de Marsac NT, Welker M (2008) Halogenase genes in nonribosomal peptide synthetase gene clusters of Microcystis (cyanobacteria): sporadic distribution and evolution. Mol Biol Evol 25:2031–2041

    PubMed  CAS  Google Scholar 

  144. Jia XY, Tian ZH, Shao L, Qu XD, Zhao QF, Tang J, Tang GL, Liu W (2006) Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol 13:575–585

    PubMed  CAS  Google Scholar 

  145. Lin S, Van Lanen SG, Shen B (2007) Regiospecific chlorination of (S)-β-tyrosyl-S-carrier protein catalyzed by SgcC3 in the biosynthesis of the enediyne antitumor antibiotic C-1027. J Am Chem Soc 129:12432–12438

    PubMed  CAS  Google Scholar 

  146. Rachid S, Scharfe M, Blocker H, Weissman KJ, Muller R (2009) Unusual chemistry in the biosynthesis of the antibiotic chondrochlorens. Chem Biol 16:70–81

    PubMed  CAS  Google Scholar 

  147. Ishida K, Welker M, Christiansen G, Cadel-Six S, Bouchier C, Dittmann E, Hertweck C, Tandeau DM (2009) Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Appl Environ Microbiol 75:2017–2026

    PubMed  CAS  Google Scholar 

  148. Wynands I, van Pée KH (2004) A novel halogenase gene from the pentachloropseudilin producer Actinoplanes sp ATCC 33002 and detection of in vitro halogenase activity. FEMS Microbiol Lett 237:363–367

    PubMed  CAS  Google Scholar 

  149. Zhang X, Parry RJ (2007) Cloning and characterization of the pyrrolomycin biosynthetic gene clusters from Actinosporangium vitaminophilum ATCC 31673 and Streptomyces sp. strain UC 11065. Antimicrob. Agents Chemother 51:946–957

    CAS  Google Scholar 

  150. Yu TW, Bai LQ, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973

    PubMed  CAS  Google Scholar 

  151. Spiteller P, Bai LQ, Shang GD, Carroll BJ, Yu TW, Floss HG (2003) The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J Am Chem Soc 125:14236–14237

    PubMed  CAS  Google Scholar 

  152. Färber P, Geisen R (2004) Analysis of differentially-expressed ochratoxin A biosynthesis genes of Penicillium nordicum. Eur J Plant Pathol 110:661–669

    Google Scholar 

  153. Li SM, Heide L (2006) The biosynthetic gene clusters of aminocoumarin antibiotics. Planta Med 72:1093–1099

    PubMed  CAS  Google Scholar 

  154. Weitnauer G, Mühlenweg A, Trefzer A, Hoffmeister D, Süssmuth RD, Jung G, Welzel K, Vente A, Girreser U, Bechthold A (2001) Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem Biol 8:569–581

    PubMed  CAS  Google Scholar 

  155. Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, Huang KX, Fonstein L, Czisny A, Whitwam RE, Farnet CM, Thorson JS (2002) The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 297:1173–1176

    PubMed  CAS  Google Scholar 

  156. Trefzer A, Pelzer S, Schimana J, Stockert S, Bihlmaier C, Fiedler HP, Welzel K, Vente A, Bechthold A (2002) Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob Agents Chemother 46:1174–1182

    PubMed  CAS  Google Scholar 

  157. Wang S, Xu Y, Maine EA, Wijeratne EM, Espinosa-Artiles P, Gunatilaka AA, Molnár I (2008) Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem Biol 15:1328–1338

    PubMed  CAS  Google Scholar 

  158. Neumann CS, Walsh CT, Kay RR (2010) A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1. Proc Natl Acad Sci USA 107:5798–5803

    PubMed  CAS  Google Scholar 

  159. Reeves CD, Hu Z, Reid R, Kealey JT (2008) Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Appl Environ Microbiol 74:5121–5129

    PubMed  CAS  Google Scholar 

  160. Otsuka M, Ichinose K, Fujii I, Ebizuka Y (2004) Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in “Streptomyces carzinostaticus”. Antimicrob Agents Chemother 48:3468–3476

    PubMed  CAS  Google Scholar 

  161. Hutchinson RI, Grant RJ, Murphy CD (2006) Biosynthetic origin of [R-(Z)]-4-amino-3-chloro-2-pentenedioic acid in Streptomyces viridogenes. Biosci Biotechnol Biochem 70:3046–3049

    PubMed  CAS  Google Scholar 

  162. McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BC (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71:1732–1737

    PubMed  CAS  Google Scholar 

  163. Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33:523–531

    PubMed  CAS  Google Scholar 

  164. Peters L, Konig GM, Terlau H, Wright AD (2002) Four new bromotryptamine derivatives from the marine bryozoan Flustra foliacea. J Nat Prod 65:1633–1637

    PubMed  CAS  Google Scholar 

  165. Segraves NL, Robinson SJ, Garcia D, Said SA, Fu X, Schmitz FJ, Pietraszkiewicz H, Valeriote FA, Crews P (2004) Comparison of fascaplysin and related alkaloids: a study of structures, cytotoxicities, and sources. J Nat Prod 67:783–792

    PubMed  CAS  Google Scholar 

  166. Clark WD, Corbett T, Valeriote F, Crews P (1997) Cyclocinamide A. An unusual cytotoxic halogenated hexapeptide from the marine sponge Psammocinia. J Am Chem Soc 119:9285–9286

    CAS  Google Scholar 

  167. Zabriskie TM, Klocke JA, Ireland CM, Marcus AH, Molinski TF, Faulkner DJ, Xu CF, Clardy JC (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc 108:3123–3124

    CAS  Google Scholar 

  168. Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J Nat Prod 68:349–353

    PubMed  CAS  Google Scholar 

  169. Buchanan GO, Williams PG, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org Lett 7:2731–2734

    PubMed  CAS  Google Scholar 

  170. Oh DC, Williams PG, Kauffman CA, Jensen PR, Fenical W (2006) Cyanosporasides A and B, chloro- and cyano-cyclopenta[a]indene glycosides from the marine actinomycete “Salinispora pacifica”. Org Lett 8:1021–1024

    PubMed  CAS  Google Scholar 

  171. Martin GD, Tan LT, Jensen PR, Dimayuga RE, Fairchild CR, Raventos-Suarez C, Fenical W (2007) Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J Nat Prod 70:1406–1409

    PubMed  CAS  Google Scholar 

  172. Quiñoà E, Crews P (1987) Phenolic constituents of Psammaplysilla. Tetrahedron Lett 28:3229–3232

    Google Scholar 

  173. Kobayashi H, Kitamura K, Nagai K, Nakao Y, Fusetani N, van Soest RWM, Matsunaga S (2007) Carteramine A, an inhibitor of neutrophil chemotaxis, from the marine sponge Stylissa carteri. Tetrahedron Lett 48:2127–2129

    CAS  Google Scholar 

  174. Yasuda T, Araki A, Kubota T, Ito J, Mikami Y, Fromont J, Kobayashi J (2009) Bromopyrrole alkaloids from marine sponges of the genus Agelas. J Nat Prod 72:488–491

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudia Wagner or Gabriele M. König .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wagner, C., König, G.M. (2012). Mechanisms of Halogenation of Marine Secondary Metabolites. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_19

Download citation

Publish with us

Policies and ethics