Skip to main content

Biosynthetic Studies Through Feeding Experiments in Marine Organisms

  • Reference work entry
  • First Online:
Handbook of Marine Natural Products

Abstract

This chapter deals with feeding experiments in biosynthetic studies of secondary metabolites from marine organisms. The evolution of the field is traced through a critical report of both review papers published from the 1980s and selected studies published in the latest years. The progress in the methodologies, from simple modification of advanced precursors, through incorporation of substrates with radioactive or stable isotopes, to recent extensive use of molecular genetic techniques, served as a main guideline for the preparation of this overview. Finally, after a section dedicated to the methodologies, the biosynthesis of oxylipins from diatoms and propionates from Mediterranean sacoglossans, recently conducted in the authors’ institute, will be discussed with more detail.

The chapter is dedicated to the memory of Prof. Constantinos Vagias, valuable friend and talented scientist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132:2469–2493

    PubMed  CAS  Google Scholar 

  2. Barrow KD (1983) Biosynthesis of marine metabolites. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives, vol 5. Academic, New York

    Google Scholar 

  3. Garson MJ (1989) Biosynthetic studies on marine natural products. Nat Prod Rep 6:143–170

    CAS  Google Scholar 

  4. Garson MJ (1993) The biosynthesis of marine natural products. Chem Rev 93:1699–1733

    CAS  Google Scholar 

  5. Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674

    PubMed  CAS  Google Scholar 

  6. Kerr RG (2000) Biosynthesis of bioactive marine natural products. In: Raman A (ed) Studies in natural product chemistry, vol 21. Elsevier, Amsterdam

    Google Scholar 

  7. Bhakuni DS, Rawat DS (2005) Bioactive marine natural products – biosynthesis of bioactive metabolites of marine organisms. Anamaya, New Delhi

    Google Scholar 

  8. Moore BS (2005) Biosynthesis of marine natural products: microorganisms (part A). Nat Prod Rep 22:580–593

    PubMed  CAS  Google Scholar 

  9. Moore BS (2006) Biosynthesis of marine natural products: macroorganisms (part B). Nat Prod Rep 23:615–629

    PubMed  CAS  Google Scholar 

  10. Cimino G, Sodano G (1993) Biosynthesis of secondary metabolites in marine molluscs. In: Scheuer PJ (ed) Topics in current chemistry, vol 167. Springer, Berlin-Heidelberg

    Google Scholar 

  11. Rein KS, Snyder RV (2006) The biosynthesis of polyketide metabolites by dinoflagellates. In: Laskin A, Sariaslani S, Gadd G (eds) Advances in applied microbiology, vol 59. Elsevier (Academic Press), Amsterdam

    Google Scholar 

  12. Cimino G, Fontana A, Cutignano A, Gavagnin M (2004) Biosynthesis in opisthobranch molluscs: general outline in the light of recent use of stable isotopes. Phytochem Rev 3:285–307

    CAS  Google Scholar 

  13. Baker BJ, Kerr RG (1993) Biosynthesis of marine sterols. In: Scheuer PJ (ed) Topics in current chemistry, vol 167. Springer, Berlin-Heidelberg

    Google Scholar 

  14. Davies-Coleman MT, Garson MJ (1998) Marine polypropionates. Nat Prod Rep 15:477–493

    PubMed  CAS  Google Scholar 

  15. Gerwick WH (1994) Structure and biosynthesis of marine algal oxylipins. Biochim Biophys Acta 1211:243–255

    PubMed  CAS  Google Scholar 

  16. Kobayashi J, Tsuda M (2004) Amphidinolides, bioactive macrolides from symbiotic marine dinoflagellates. Nat Prod Rep 21:77–93

    PubMed  CAS  Google Scholar 

  17. Garson MJ, Simpson JS (2004) Marine isocyanides and related natural products – structure, biosynthesis and ecology. Nat Prod Rep 21:164–179

    PubMed  CAS  Google Scholar 

  18. Morales RW, Litchfield C (1977) Incorporation of 1-14C-Acetate into C26 fatty acids of the marine sponge Microciona prolifera. Lipids 12:570–576

    CAS  Google Scholar 

  19. Young DN, McConnell OJ, Fenical W (1981) In vivo biosynthesis of tribromoheptene oxide in Bonnemaisonia nootkana. Phytochemistry 20:2335–2337

    CAS  Google Scholar 

  20. De Rosa M, Minale L, Sodano G (1976) Metabolism in Porifera VI. Role of the 5,6 double bond and the fate of the C-4 cholesterol during the conversion into 3β-hydroxymethyl-A-nor-5α-steranes in the sponge Axinella verrucosa. Experientia 32:1112–1113

    Google Scholar 

  21. Bibolino L, Minale L, Sodano G (1978) Investigations on the ring contraction step in the biosynthesis of A-nor-stanols by the marine sponge Axinella verrucosa. J Chem Soc Chem Commun 13:524–525

    Google Scholar 

  22. Stallard MO, Faulkner DJ (1974) Chemical constituents of the digestive gland of the sea hare Aplysia californica II. Chemical transformations. Comp Biochem Physiol B 49:37–41

    PubMed  CAS  Google Scholar 

  23. Hori A, Shimizu Y (1983) Biosynthetic 15N-enrichment and 15N n.m.r. spectra of neosaxitoxin and gonyautoxin-II: application to structure determination. J Chem Soc Chem Commun 790–792

    Google Scholar 

  24. Lee MS, Repeta DJ, Nakanishi K, Zagorski MG (1986) Biosynthetic origins and assignments of 13C NMR peaks of brevetoxin B. J Am Chem Soc 108:7855–7856

    PubMed  CAS  Google Scholar 

  25. Catalan CAN, Thompson JE, Kokke WCMC, Djerassi C (1985) Biosynthetic studies of marine lipids—3: experimental demonstration of the course of side chain extension in marine sterols. Tetrahedron 41:1073–1084

    CAS  Google Scholar 

  26. Garson MJ (1986) Biosynthesis of the novel diterpene isonitrile diisocyanoadociane by a marine sponge of the Amphimedon genus: incorporation studies with sodium [14C]cyanide and sodium [2-14C]acetate. J Chem Soc Chem Commun 35–36

    Google Scholar 

  27. Fookes CJR, Garson MJ, MacLeod JK, Skelton BW, White AH (1988) Biosynthesis of diisocyanoadociane, a novel diterpene from the marine sponge Amphimedon sp. Crystal structure of a monoamide derivative. J Chem Soc Perkin Trans 1:1003–1011

    Google Scholar 

  28. Garson MJ (1986) Abstracts of 8th National organic meeting Royal Australian Chemical Institute, Adelaide; further published as: Dai MC, Garson MJ, Coll JC (1991) Biosynthetic processes in soft corals. I. A comparison of terpene biosynthesis in Alcyonium molle (Alcyoniidae) and Heteroxenia sp. (Xeniidae). Comp Biochem Physiol B 99:775–783

    Google Scholar 

  29. Ireland C, Scheuer PJ (1979) Photosynthetic marine mollusks: in vivo 14C incorporation into metabolites of the sacoglossan Placobranchus ocellatus. Science 205:922–923

    PubMed  CAS  Google Scholar 

  30. Cimino G, De Rosa S, De Stefano S, Sodano G, Villani G (1983) Dorid nudibranch elaborates its own chemical defense. Science 219:1237–1238

    PubMed  CAS  Google Scholar 

  31. Needham J, Andersen RJ, Kelly MT (1992) Biosynthesis of oncorhyncolide, a metabolite of the seawater bacterial isolate MK 157. J Chem Soc Chem Commun 18:1367–1369

    Google Scholar 

  32. Boland W, Mertes K (1985) Biosynthesis of algal pheromones. A model study with the compositae Senecio isatideus. Eur J Biochem 147:83–91

    PubMed  CAS  Google Scholar 

  33. Stratmann K, Boland W, Muller DG (1992) Pheromones of marine brown algae; a new branch of the eicosanoid metabolism. Angew Chem Int Ed Engl 31:1246–1248

    Google Scholar 

  34. Karuso P, Scheuer PJ (1989) Biosynthesis of isocyanoterpenes in sponges. J Org Chem 54:2092–2095

    CAS  Google Scholar 

  35. Cimino G, Ghiselin MT (2009) Chemical defense and the evolution of opisthobranch gastropods. California Academy of Sciences, San Francisco

    Google Scholar 

  36. Cimino G, Fontana A, Gavagnin M (1999) Marine opisthobranch molluscs: chemistry and ecology in sacoglossans and dorids. Curr Org Chem 3:327–372

    CAS  Google Scholar 

  37. Cimino G, Ciavatta ML, Fontana A, Gavagnin M (2001) Metabolites of marine opisthobranchs: chemistry and biological activity. In: Tringali C (ed) Bioactive compounds from natural sources. Taylor and Francis, London

    Google Scholar 

  38. Cimino G, De Rosa S, De Stefano S, Morrone R, Sodano G (1985) The chemical defense of nudibranch molluscs: structure, biosynthetic origin and defensive properties of terpenoids from the dorid nudibranch Dendrodoris grandiflora. Tetrahedron 41:1093–1100

    CAS  Google Scholar 

  39. Cimino G, De Rosa S, De Stefano S, Sodano G (1985) Observations on the toxicity and metabolic relationships of polygodial, the chemical defense of the nudibranch Dendrodoris limbata. Experientia 41:1335–1336

    CAS  Google Scholar 

  40. Cimino G, De Rosa S, De Stefano S, Sodano G (1986) Marine natural products: new results from Mediterranean invertebrates. Pure Appl Chem 58:375–386

    CAS  Google Scholar 

  41. Cimino G, Sodano G (1989) The chemical ecology of Mediterranean opisthobranchs. Chem Scr 29:389–394

    CAS  Google Scholar 

  42. Gustafson K, Andersen RJ, Chen MHM, Clardy J, Hochlowski JE (1984) Terpenoic acid glycerides from the dorid nudibranch Archidoris montereyensis. Tetrahedron Lett 25:11–14

    CAS  Google Scholar 

  43. Gustafson K, Andersen RJ (1985) Chemical studies of British Columbia nudibranchs. Tetrahedron 41:1101–1108

    CAS  Google Scholar 

  44. Cimino G, Spinella A, Sodano G (1989) Naturally occurring prostaglandin-1,15-lactones. Tetrahedron Lett 30:3589–3592

    CAS  Google Scholar 

  45. Cimino G, Crispino A, Di Marzo V, Spinella A, Sodano G (1991) Prostaglandin 1,15-lactones of the F series from the nudibranch mollusk Tethys fimbria. J Org Chem 56:2907–2911

    CAS  Google Scholar 

  46. Cimino G, Crispino A, Di Marzo V, Sodano G, Spinella A, Villani G (1991) A marine mollusc provides the first example of in vivo storage of prostaglandins: prostaglandin-1,15-lactones. Experientia 47:56–60

    PubMed  CAS  Google Scholar 

  47. Di Marzo V, Cimino G, Crispino A, Minardi C, Sodano G, Spinella A (1991) A novel multifunctional metabolic pathway in a marine mollusc leads to unprecedented prostaglandin derivatives (prostaglandin-1,15-lactones). Biochem J 273:593–600

    PubMed  Google Scholar 

  48. Di Marzo V, Minardi C, Vardaro RR, Mollo E, Cimino G (1992) Prostaglandin F-1,15-lactone fatty acyl esters: a prostaglandin lactone pathway branch developed during the reproduction and early larval stages of a marine mollusk. Comp Biochem Physiol 101B:99–104

    Google Scholar 

  49. Manker DC, Garson MJ, Faulkner DJ (1988) De novo biosynthesis of polypropionate metabolites in the marine pulmonate Siphonaria denticulata. J Chem Soc Chem Commun 1061–1062

    Google Scholar 

  50. Garson MJ, Small CJ, Skelton BW, Thinapong P, White AH (1990) Structural and stereochemical correlations of polypropionate metabolites from marine pulmonates: revision of the relative stereochemistry of pectinatone by X-ray structure analysis. J Chem Soc Perkin Trans 1:805–807

    Google Scholar 

  51. Needham J, Kelly MT, Ishige M, Andersen RJ (1994) Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens: structure elucidation and biosynthesis. J Org Chem 59:2058–2063

    CAS  Google Scholar 

  52. Sitachitta N, Rossi J, Roberts MA, Gerwick WH, Fletcher MD, Willis CL (1998) Biosynthesis of the marine cyanobacterial metabolite barbamide. 1. Origin of the trichloromethyl group. J Am Chem Soc 120:7131–7132

    CAS  Google Scholar 

  53. Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin a, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367

    PubMed  CAS  Google Scholar 

  54. Renner MK, Jensen PR, Fenical W (2000) Mangicols: structures and biosynthesis of a new class of sesterterpene polyols from a marine fungus of the genus Fusarium. J Org Chem 65:4843–4852

    PubMed  CAS  Google Scholar 

  55. Kobayashi H, Meguro S, Yoshimoto T, Namikoshi M (2003) Absolute structure, biosynthesis, and anti-microtubule activity of phomopsidin, isolated from a marine-derived fungus Phomopsis sp. Tetrahedron 59:455–459

    CAS  Google Scholar 

  56. Massé G, Belt ST, Rowland SJ, Rohmer M (2004) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci USA 101:4413–4418

    PubMed  Google Scholar 

  57. Massé G, Belt ST, Rowland SJ (2004) Biosynthesis of unusual monocyclic alkenes by the diatom Rhizosolenia setigera (Brightwell). Phytochemistry 65:1101–1106

    PubMed  Google Scholar 

  58. Pohnert G, Jung V (2003) Intracellular compartmentation in the biosynthesis of caulerpenyne: study on intact macroalgae using stable-isotope-labeled precursors. Org Lett 5:5091–5093

    PubMed  CAS  Google Scholar 

  59. Brust A, Garson MJ (2003) Advanced precursors in marine biosynthetic study. Part 3: the biosynthesis of dichloroimines in the tropical marine sponge Stylotella aurantium. Tetrahedron Lett 44:327–330

    CAS  Google Scholar 

  60. Simpson JS, Brust A, Garson MJ (2004) Biosynthetic pathways to dichloroimines; precursor incorporation studies on terpene metabolites in the tropical marine sponge Stylotella aurantium. Org Biomol Chem 2:949–956

    PubMed  CAS  Google Scholar 

  61. Graziani EI, Andersen RJ, Krug PJ, Faulkner DJ (1996) Stable isotope incorporation evidence for the de novo biosynthesis of terpenoic acid glycerides by dorid nudibranchs. Tetrahedron 52:6869–6878

    CAS  Google Scholar 

  62. Fontana A, Tramice A, Cutignano A, d’Ippolito G, Gavagnin M, Cimino G (2003) Terpene biosynthesis in the nudibranch Doriopsilla areolata. J Org Chem 68:2405–2409

    PubMed  CAS  Google Scholar 

  63. Gavagnin M, Mollo E, Castelluccio F, Ghiselin MT, Calado G, Cimino G (2001) Can mollusks biosynthesize typical sponge metabolites? The case of the nudibranch Doriopsilla areolata. Tetrahedron 57:8913–8916

    CAS  Google Scholar 

  64. Butler MS, Capon RJ (1993) Beyond polygodial: new drimane sesquiterpene from a Southern marine sponge Dysidea sp. Aust J Chem 46:1255–1267

    CAS  Google Scholar 

  65. Fontana A, Tramice A, Cutignano A, d’Ippolito G, Cimino G (2003) Studies on the biogenesis of verrucosins, toxic diterpenoid glycerides of the Mediterranean mollusc Doris verrucosa. Eur J Org Chem 16:2104–2108

    Google Scholar 

  66. Giner JL (1993) Biosynthesis of marine sterol side chains. Chem Rev 93:1735–1752

    CAS  Google Scholar 

  67. De Luca P, De Rosa M, Minale L, Sodano G (1972) Marine sterols with a new pattern of side-chain alkylation from the sponge Aplysina(=Verongia) aerophoba. J Chem Soc Perkin Trans 1:2132–2135

    Google Scholar 

  68. Fattorusso E, Magno S, Mayol L, Santacroce C, Sica D (1975) Calysterol: a C29 cyclopropene-containing marine sterol from the sponge Calyx nicaensis. Tetrahedron 31:1715–1716

    CAS  Google Scholar 

  69. Minale L, Sodano G (1974) Marine sterols: unique 3β-hydroxymethyl-A-nor-5α-steranes from the sponge Axinella verrucosa. J Chem Soc Perkin Trans 1:2380–2384

    Google Scholar 

  70. Minale L, Sodano G (1974) Marine sterols: 19-nor-stanols from the sponge Axinella polypoides. J Chem Soc Perkin Trans 1:1888–1892

    Google Scholar 

  71. De Rosa M, Minale L, Sodano G (1975) Metabolism in Porifera-V. Biosynthesis of 19-nor-stanols: conversion of cholesterol into 19-nor-cholestanols by the sponge Axinella polypoides. Experientia 31:758–759

    Google Scholar 

  72. Djerassi C, Silva CJ (1991) Biosynthetic studies of marine lipids. 41 Sponge sterols: origin and biosynthesis. Acc Chem Res 24:371–378

    CAS  Google Scholar 

  73. Cafieri F, Fattorusso E, Magno S, Santacroce C, Sica D (1973) Isolation and structure of axisonitrile-1 and axisothiocyanate-1 two unusual sesquiterpenoids from the marine sponge Axinella cannabina. Tetrahedron 29:4259–4262

    CAS  Google Scholar 

  74. Di Blasio B, Fattorusso E, Magno S, Mayol L, Pedone C, Santacroce C, Sica D (1976) Axisonitrile-3, axisothiocyanate-3 and axamide-3. Sesquiterpenes with a novel spiro[4,5]decane skeleton from the sponge Axinella cannabina. Tetrahedron 32:473–478

    Google Scholar 

  75. Dumdei J, Flowers AE, Garson MJ, Moore CJ (1997) The biosynthesis of sesquiterpene isocyanides and isothiocyanates in the marine sponge Acanthella cavernosa (Dendy); Evidence for dietary transfer to the dorid nudibranch Phyllidiella pustulosa. Comp Biochem Physiol A Physiol 118:1385–1392

    Google Scholar 

  76. Simpson JS, Garson MJ (2004) Biosynthetic pathways to isocyanides and isothiocyanates; precursor incorporation studies on terpene metabolites in the tropical marine sponges Amphimedon terpenensis and Axinyssa n.sp. Org Biomol Chem 2:939–948

    PubMed  CAS  Google Scholar 

  77. Karuso P (1987) Chemical ecology of the nudibranchs. In: Scheuer PJ (ed) Bioorganic marine chemistry, vol 1. Springer, Berlin

    Google Scholar 

  78. Cimino G, Sodano G (1994) Transfer of sponge secondary metabolites to predators. In: Van Soest RWM, Van Kempen TMG, Braekman JC (eds) Sponges in time and space: biology, chemistry, paleontology. AA Balkema, Rotterdam

    Google Scholar 

  79. Fenical W, Sleeper HL, Paul VJ, Stallard MO, Sun HH (1979) Defensive chemistry of Navanax and related opisthobranch molluscs. Pure Appl Chem 51:1865–1874

    CAS  Google Scholar 

  80. Porcelli M, Cacciapuoti G, Zappia V, Cimino G, Gavagnin M, Sodano G (1989) Biosynthesis and metabolism of 9-[5'-deoxy-(methylthio)-β-D-xylofuranosyl] adenine, a novel natural analog of methylthioadenosine. Biochem J 263:635–640

    PubMed  CAS  Google Scholar 

  81. Cutignano A, Tramice A, De Caro S, Villani G, Cimino G, Fontana A (2003) Biogenesis of 3-alkylpyridine alkaloids in the marine mollusc Haminoea orbignyana. Angew Chem Int Ed 42:2633–2636

    CAS  Google Scholar 

  82. Cutignano A, Cimino G, Giordano A, d’Ippolito G, Fontana A (2004) Polyketide origin of 3-alkylpyridines in the marine mollusc Haminoea orbignyana. Tetrahedron Lett 45:2627–2629

    CAS  Google Scholar 

  83. Graziani EI, Andersen RJ (1996) Investigations of sesquiterpenoid biosynthesis by the dorid nudibranch Acanthodoris nanaimoensis. J Am Chem Soc 118:4701–4702

    CAS  Google Scholar 

  84. Fontana A, Villani G, Cimino G (2000) Terpene biosynthesis in marine molluscs: incorporation of glucose in drimane esters of Dendrodoris nudibranchs via classical mevalonate pathway. Tetrahedron Lett 41:2429–2433

    CAS  Google Scholar 

  85. Garson MJ, Dexter AF, Lambert LK, Liokas V (1992) Isolation of the bioactive terpene 7-deacetoxyolepupuane from the temperate marine sponge Dysidea sp. J Nat Prod 55:364–367

    PubMed  CAS  Google Scholar 

  86. Moghaddam MF, Gerwick WH (1991) Cell-Free biosynthesis and source of hydroxyl groups in (12R,13S)-dihydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid, a novel eicosanoid from the marine alga Gracilariopsis lemaneiformis. J Nat Prod 54:1619–1624

    PubMed  CAS  Google Scholar 

  87. Gerwick WH, Moghaddam MF, Hamberg M (1991) Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: mechanism of formation of vicinal dihydroxy fatty acids. Arch Biochem Biophys 290:436–444

    PubMed  CAS  Google Scholar 

  88. Xiang L, Kalaitzis JA, Moore BS (2004) EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions. Proc Natl Acad Sci USA 101:15609–15614

    PubMed  CAS  Google Scholar 

  89. Beer LL, Moore BS (2007) Biosynthetic convergence of salinosporamides a and B in the marine actinomycete Salinispora tropica. Org Lett 9:845–848

    PubMed  CAS  Google Scholar 

  90. Liu Y, Hazzard C, Eustáquio AS, Reynolds KA, Moore BS (2009) Biosynthesis of salinosporamides from α, β-unsaturated fatty acids: implications for extending polyketide synthase diversity. J Am Chem Soc 131:10376–10377

    PubMed  CAS  Google Scholar 

  91. Eustáquio AS, McGlinchey RP, Liu Y, Hazzard C, Beer LL, Florova G, Alhamadsheh MM, Lechner A, Kale AJ, Kobayashi Y, Reynolds KA, Moore BS (2009) Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-L-methionine. Proc Natl Acad Sci USA 106:12295–12300

    PubMed  Google Scholar 

  92. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide a: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42:355–357

    CAS  Google Scholar 

  93. Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70:6196–6203

    PubMed  CAS  Google Scholar 

  94. Reed KA, Manam RR, Mitchell SS, Xu J, Teisan S, Chao TH, Deyanat-Yazdi G, Neuteboom STC, Lam KS, Potts BCM (2007) Salinosporamides D−J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome. J Nat Prod 70:269–276

    PubMed  CAS  Google Scholar 

  95. Stadler M, Bitzer J, Mayer-Bartschmid A, Müller H, Benet-Buchholz J, Gantner F, Tichy HV, Reinemer P, Bacon KB (2007) Cinnabaramides a−G: analogues of lactacystin and salinosporamide from a terrestrial streptomycete. J Nat Prod 70:246–252

    PubMed  CAS  Google Scholar 

  96. Miljkovic A, Mantle PG, Williams DJ, Rassing B (2001) Scorpinone: a new natural azaanthraquinone produced by a Bispora-like tropical fungus. J Nat Prod 64:1251–1253

    PubMed  CAS  Google Scholar 

  97. Mantle PG, Hawksworth DL, Pazoutova S, Collinson LM, Rassing BR (2006) Amorosia littoralis gen. sp. nov., a new genus and species name for the scorpinone and caffeine-producing hyphomycete from the littoral zone in the Bahamas. Mycol Res 110:1371–1378

    PubMed  CAS  Google Scholar 

  98. Van Wagoner RM, Mantle PG, Wright JLC (2008) Biosynthesis of scorpinone, a 2-azaanthraquinone from Amorosia littoralis, a fungus from marine sediment. J Nat Prod 71:426–430

    PubMed  Google Scholar 

  99. Kadkol MV, Gopalkrishnan KS, Narasimhachari N (1971) Isolation and characterization of naphthaquinone pigments from Torula herbarum (pers.) herbarin and dehydroherbarin. J Antibiot 24:245–248

    PubMed  CAS  Google Scholar 

  100. Parisot D, Devys M, Barbier M (1989) Conversion of anhydrofusarubin lactol into the antibiotic bostrycoidin. J Antibiot 42:1189–1190

    PubMed  CAS  Google Scholar 

  101. Du L, Zhu T, Fang Y, Liu H, Gu Q, Zhu W (2007) Aspergiolide A, a novel anthraquinone derivative with naphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron 63:1085–1088

    CAS  Google Scholar 

  102. Tao K, Du L, Sun X, Cai M, Zhu T, Zhou X, Gu Q, Zhang Y (2009) Biosynthesis of aspergiolide A, a novel antitumor compound by a marine-derived fungus Aspergillus glaucus via the polyketide pathway. Tetrahedron Lett 50:1082–1085

    CAS  Google Scholar 

  103. Anke H, Kolthoum I, Zähner H, Laatsch H (1980) Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. 1. Occurrence, isolation, identification and antimicrobial activity. Arch Microbiol 126:223–230

    PubMed  CAS  Google Scholar 

  104. Lund ED, Chu FLE, Littreal PR, Ruck KE, Harvey E (2009) An investigation of the mechanisms for sterol synthesis and dietary sterol bioconversion in the heterotrophic protists Oxyrrhis marina and Gyrodinium dominans. J Exp Mar Biol Ecol 374:150–159

    CAS  Google Scholar 

  105. Stratmann K, Boland W, Müller DG (1993) Biosynthesis of pheromones in female gametes of marine brown algae (phaeophyceae). Tetrahedron 49:3755–3766

    CAS  Google Scholar 

  106. Rui F, Boland W (2010) Algal pheromone biosynthesis: stereochemical analysis and mechanistic implications in gametes of Ectocarpus siliculosus. J Org Chem 75:3958–3964

    PubMed  CAS  Google Scholar 

  107. Ponhert G, Boland W (1997) Pericyclic reactions in nature: synthesis and cope rearrangement of thermolabile bis-alkenylcyclopropanes from female gametes of marine brown algae (phaeophyceae). Tetrahedron 53:13681–13694

    Google Scholar 

  108. Cimino G, Spinella A, Sodano G (1989) Potential alarm pheromones from the Mediterranean opisthobranch Scaphander lignarius. Tetrahedron Lett 30:5003–5004

    CAS  Google Scholar 

  109. Della Sala G, Cutignano A, Fontana A, Spinella A, Calabrese G, Domenech-Coll A, d’Ippolito G, Della Monica C, Cimino G (2007) Towards the biosynthesis of the aromatic products of the Mediterranean mollusc Scaphander lignarius: isolation and synthesis of analogues of lignarenones. Tetrahedron 63:7256–7263

    CAS  Google Scholar 

  110. Cutignano A, Avila C, Domenech-Coll A, d’Ippolito G, Cimino G, Fontana A (2008) First biosynthetic evidence on the phenyl-containing polyketides of the marine mollusc Scaphander lignarius. Org Lett 10:2963–2966

    PubMed  CAS  Google Scholar 

  111. Fontana A, unpublished data.

    Google Scholar 

  112. Schultz AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, Gould SJ, Fenical W, Moore BS (2008) Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130:4507–4516

    PubMed  CAS  Google Scholar 

  113. Renner MK, Shen YC, Cheng XC, Jensen PR, Frankmoelle W, Kauffman CA, Fenical W, Lobkovsky E, Clardy J (1999) Cyclomarins A − C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc 121:11273–11276

    CAS  Google Scholar 

  114. Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    PubMed  CAS  Google Scholar 

  115. Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–3282

    PubMed  CAS  Google Scholar 

  116. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    PubMed  CAS  Google Scholar 

  117. Kellmann R, Stüken A, Orr RJS, Svendsen HM, Jakobsen KS (2010) Biosynthesis and molecular genetics of polyketides in marine dinoflagellates. Mar Drugs 8:1011–1048

    PubMed  CAS  Google Scholar 

  118. Hallegraeff GM, Anderson DM, Cembella AD (2003) Manual on harmful marine microalgae, 2nd edn. UNESCO, Paris

    Google Scholar 

  119. Shimizu Y (1996) Microalgal metabolites: a new perspective. Ann Rev Microbiol 50:431–465

    CAS  Google Scholar 

  120. Kellmann R, Neilan BA (2007) Biochemical characterization of paralytic shellfish toxin biosynthesis in vitro. J Phycol 43:497–508

    CAS  Google Scholar 

  121. Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053

    PubMed  CAS  Google Scholar 

  122. Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538

    PubMed  CAS  Google Scholar 

  123. Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178

    Google Scholar 

  124. Li Z (2009) Advances in marine microbial symbionts in the China Sea and related pharmaceutical metabolites. Mar Drugs 7:113–129

    PubMed  CAS  Google Scholar 

  125. Look SA, Fenical W, Matsumoto GK, Clardy J (1986) The pseudopterosins: a new class of antiinflammatory and analgesic diterpene pentosides from the marine sea whip Pseudopterogorgia elisabethae (Octocorallia). J Org Chem 51:5140–5145

    CAS  Google Scholar 

  126. Look SA, Fenical W (1987) The seco-pseudopterosins, new anti-inflammatory diterpene-glycosides from a Caribbean gorgonian octocoral of the genus Pseudopterogorgia. Tetrahedron 43:3363–3370

    CAS  Google Scholar 

  127. Mydlarz LD, Jacobs RS, Boehnlein J, Kerr RG (2003) Pseudopterosin biosynthesis in Symbiodinium sp., the dinoflagellate symbiont of Pseudopterogorgia elisabethae. Chem Biol 10:1051–1056

    PubMed  CAS  Google Scholar 

  128. Coleman AC, Kerr RG (2000) Radioactivity-guided isolation and characterization of the bicyclic pseudopterosin diterpene cyclase product from Pseudopterogorgia elisabethae. Tetrahedron 56:9569–9574

    CAS  Google Scholar 

  129. Kohl AC, Kerr RG (2004) Identification and characterization of the pseudopterosin diterpene cyclase, elisabethatriene synthase, from the marine gorgonian, Pseudopterogorgia elisabethae. Arch Biochem Biophys 424:97–104

    PubMed  CAS  Google Scholar 

  130. Ferns TA, Kerr RG (2005) Oxidations of erogorgiaene in pseudopterosin biosynthesis. Tetrahedron 61:12358–12365

    CAS  Google Scholar 

  131. Ferns TA, Kerr RG (2005) Identification of amphilectosins as key intermediates in pseudopterosin biosynthesis. J Org Chem 70:6152–6157

    PubMed  CAS  Google Scholar 

  132. Kerr RG, Kohl AC, Ferns TA (2006) Elucidation of the biosynthetic origin of the anti-inflammatory pseudopterosins. J Ind Microbial Biotechnol 33:532–538

    CAS  Google Scholar 

  133. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    PubMed  CAS  Google Scholar 

  134. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227

    PubMed  CAS  Google Scholar 

  135. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849

    PubMed  CAS  Google Scholar 

  136. Kennedy J, Marchesi JR, Dobson ADW (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20

    PubMed  CAS  Google Scholar 

  137. Kennedy J, Flemer B, Jackson SA, Lejon DPH, Morrissey JP, O’Gara F, Dobson ADW (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628

    PubMed  CAS  Google Scholar 

  138. Hamann MT, Roggo S, Hill RT (2007) Marine natural products. Key advances to the practical application of this resource in drug development. CHIMIA 61:313–321

    CAS  Google Scholar 

  139. Kasanah NK, Rao KV, Yousaf M, Wedge DE, Hill RT, Hamann MT (2004) Biotransformation studies of the manzamine alkaloid. Mar Biotechnol 6:S268–S272

    Google Scholar 

  140. Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association – A review. Mar Drugs 8:1417–1468

    PubMed  CAS  Google Scholar 

  141. Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotechnol 33:539–5418

    PubMed  CAS  Google Scholar 

  142. Simpson TJ (1998) Application of isotopic methods to secondary metabolic pathways. In: Leeper FJ, Vederas JC (eds) Biosynthesis. Polyketides and vitamins. Springer, Berlin

    Google Scholar 

  143. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 13:565–574

    Google Scholar 

  144. Dewick PM (2002) The biosynthesis of C5-C25 terpenoid compounds. Nat Prod Rep 16:97–130

    Google Scholar 

  145. Wendel T, Jüttner F (1996) LOX-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochemistry 41:1445–1449

    CAS  Google Scholar 

  146. d’Ippolito G, Cutignano A, Briante R, Febbraio F, Cimino G, Fontana A (2005) New C16 fatty-acid-based oxylipin pathway in the marine diatom Thalassiosira rotula. Org Biomol Chem 3:4065–4070

    PubMed  Google Scholar 

  147. Fontana A, d’Ippolito G, Cutignano A, Romano G, Lamari N, Massa Gallucci A, Cimino G, Miralto A, Ianora A (2007) LOX-induced lipid peroxidation as mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. Chembiochem 8:1810–1818

    PubMed  CAS  Google Scholar 

  148. Fontana A, d’Ippolito G, Cutignano A et al (2007) Oxylipin pathways in marine diatoms: a look at the chemical aspects. Pur Appl Chem 79:481–490

    CAS  Google Scholar 

  149. d’Ippolito G, Lamari L, Montresor M (2009) 15S-Lipoxygenase metabolism in the marine diatom Pseudonitczha delicatissima. New Phytol 183:1064–1071

    PubMed  Google Scholar 

  150. Wichard T, Poulet S, Pohnert G (2005) Determination and quantification of α, β, γ, δ-unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: application in marine field studies. J Chromatogr B 814:155–161

    CAS  Google Scholar 

  151. Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaün JP, Potin P (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol 135:1838–1848

    PubMed  CAS  Google Scholar 

  152. Feussner I, Wasternack C (2002) The LOX pathway. Annu Rev Plant Biol 53:275–297

    PubMed  CAS  Google Scholar 

  153. Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321

    PubMed  Google Scholar 

  154. Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    PubMed  CAS  Google Scholar 

  155. Gerwick WH, Roberts MA, Vulpanovici A (1999) Biogenesis and biological function of marine algal oxylipins. Adv Exp Med Biol 447:211–218

    PubMed  CAS  Google Scholar 

  156. Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    PubMed  CAS  Google Scholar 

  157. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    PubMed  CAS  Google Scholar 

  158. Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 245–271

    Google Scholar 

  159. Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302

    PubMed  CAS  Google Scholar 

  160. Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicol 19:493–511

    CAS  Google Scholar 

  161. Bowler CP, Vardi A, Allen A (2009) Oceanographic and biogeochemical insights from diatom genomes. Ann Rev Mar Sci 2:333–365

    Google Scholar 

  162. Ribalet F, Wichard T, Pohnert G, Ianora A, Miralto A, Casotti R (2007) Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68:2059–2067

    PubMed  CAS  Google Scholar 

  163. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    PubMed  CAS  Google Scholar 

  164. d’Ippolito G, Romano T, Caruso T, Spinella A, Cimino G, Fontana A (2003) Production of octadienal in the marine diatom Skeletonema costatum. Org Lett 5:885–887

    PubMed  Google Scholar 

  165. Pohnert G, Adolph S, Wichard T (2004) Short synthesis of labeled and unlabeled 6Z,9Z,12Z,15-hexadecatetraenoic acid as metabolic probes for biosynthetic studies on diatoms. Chem Phys Lipids 131:159–166

    PubMed  CAS  Google Scholar 

  166. d’Ippolito G, Cutignano A, Tucci S, Romano G, Cimino G, Fontana A (2006) Biosynthetic intermediates and stereochemical aspects of the aldehyde biosynthesis in the marine diatom Thalassiosira rotula. Phytochemistry 67:314–322

    PubMed  Google Scholar 

  167. Barofsky A, Pohnert G (2007) Biosynthesis of polyunsaturated short chain aldehydes in the diatom Thalassiosira rotula. Org Lett 9:1017–1020

    PubMed  CAS  Google Scholar 

  168. Wichard T, Pohnert G (2006) Formation of halogenated medium chain hydrocarbons by a lipoxygenase/hydroperoxide halolyase-mediated transformation in planktonic microalgae. J Am Chem Soc 128:7114–7115

    PubMed  CAS  Google Scholar 

  169. d’Ippolito G, Cutignano A, Tucci S, Romano G, Cimino G, Miralto A, Fontana A (2004) The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim Biophys Acta 1686:100–107

    PubMed  Google Scholar 

  170. Cutignano A, d’Ippolito G, Romano G, Lamari N, Cimino G, Febbraio F, Nucci R, Fontana A (2006) Chloroplastic galactolipids fuel the aldehyde biosynthesis in the marine diatom Thalassiosira rotula. Chembiochem 7:450–456

    PubMed  CAS  Google Scholar 

  171. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    PubMed  CAS  Google Scholar 

  172. Trench RK, Greene RW, Bystrom BG (1969) Chloroplasts as functional organelles in animal tissues. J Cell Biol 42:404–417

    PubMed  CAS  Google Scholar 

  173. Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ, Kennedy RA, Pierce SK, Rumpho ME (2000) Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol 124:331–342

    PubMed  CAS  Google Scholar 

  174. Pierce SK, Massey SE, Hanten JH, Curtis NE (2003) Horizontal transfer of functional nuclear genes between multicellular organisms. Biol Bull 204:237–240

    PubMed  Google Scholar 

  175. Gavagnin M, Marin A, Mollo E, Crispino A, Villani G, Cimino G (1994) Secondary metabolites from Mediterranean Elysioidea: origin and biological role. Comp Biochem Physiol 108B:107–115

    CAS  Google Scholar 

  176. Cutignano A, Cimino G, Villani G, Fontana A (2009) Shaping the polypropionate biosynthesis in the solar powered mollusc Elysia viridis. Chembiochem 10:315–322

    PubMed  CAS  Google Scholar 

  177. Muller M, He J, Hertweck C (2006) Dissection of the late steps in aureothin biosynthesis. Chembiochem 7:37–39

    PubMed  Google Scholar 

  178. Fontana A (2006) Biogenetic proposals and biosynthetic studies on secondary metabolites of opisthobranch molluscs. In: Cimino G, Gavagnin M (eds) Molluscs: from chemo-ecological study to biotechnological application, vol 43, Progress in molecular and subcellular biology, subseries marine molecular biotechnology. Springer, Berlin

    Google Scholar 

  179. Manzo E, Ciavatta ML, Gavagnin M, Mollo E, Wahidulla S, Cimino G (2005) New gamma-pyrone propionates from the Indian ocean sacoglossan Placobranchus ocellatus. Tetrahedron Lett 46:465–468

    CAS  Google Scholar 

  180. Cueto M, D’Croz L, Matè JL, San-Martín A, Darias J (2005) Elysiapyrones from Elysia diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo [18.2.0]octane core? Org Lett 7:415–418

    PubMed  CAS  Google Scholar 

  181. Miller AK, Trauner D (2005) Mining the tetraene manifold: total synthesis of complex pyrones from Placobranchus ocellatus. Angew Chem Int Ed 44:4602–4606

    CAS  Google Scholar 

  182. Miller AK, Trauner D (2006) Mapping the chemistry of highly unsaturated pyrone polyketides. Synlett 14:2295–2316

    Google Scholar 

  183. Eade SJ, Walter MW, Byrne C, Odell B, Rodriguez R, Baldwin J, Adlington RM, Moses JE (2008) Biomimetic studies of pyrone-derived natural products: exploring chemical pathways from a unique polyketide precursor. J Org Chem 73(13):4830–4839

    PubMed  CAS  Google Scholar 

  184. Brückner S, Baldwin JE, Moses J, Adlington RM, Cowley AR (2003) Mechanistic evidence supporting the biosynthesis of photodeoxytridachione. Tetrahedron Lett 44:7471–7473

    Google Scholar 

  185. Zuidema DR, Miller AK, Trauner D, Jones PB (2005) Photosynthesized conversion of 9,10-deoxytridachione to photodeoxytridachione. Org Lett 7:4959–4962

    PubMed  CAS  Google Scholar 

  186. Diaz-Marrero A, Cueto M, D’Croz L, Darias J (2008) Validating an endoperoxide as a key intermediate in the biosynthesis of elysiapyrones. Org Lett 10:3057–3060

    PubMed  CAS  Google Scholar 

  187. Ireland C, Faulkner DJ (1981) The metabolites of the marine molluscs Tridachiella diomedea and Tridachia crispata. Tetrahedron 37:233–240

    Google Scholar 

  188. Demming-Adams B, Gilmore AM, Adams WW (1996) In vitro function of carotenoids in higher plants. FASEB 10:403–412

    Google Scholar 

  189. Di Marzo V, Vardaro RR, De Petrocellis L, Villani G, Minei R, Cimino G (1991) Cyercenes, novel pyrones from the sacoglossan mollusc Cyerce cristallina. Tissue distribution, biosynthesis and possible involvement in defense and regenerative processes. Experientia 47:1221–1227

    Google Scholar 

  190. Vardaro RR, Di Marzo V, Crispino A, Cimino G (1991) Cyercenes, novel polypropionates pyrones from the autotomizing Mediterranean mollusc Cyerce cristallina. Tetrahedron 47:5569–5576

    CAS  Google Scholar 

  191. Vardaro RR, Di Marzo V, Marin A, Cimino G (1992) α- and γ-Pyrone-polypropionates from the Mediterranean ascoglossan mollusc Ercolania funerea. Tetrahedron 48:9561–9566

    CAS  Google Scholar 

  192. Zuidema DR, Jones PB (2006) Triplet photosensitization in cyercene A and related pyrones. J Photochem Photobiol B 83:137–145

    PubMed  CAS  Google Scholar 

  193. Zuidema DR, Jones PB (2005) Photochemical relationships in sacoglossan polypropionates. J Nat Prod 68:481–486

    PubMed  CAS  Google Scholar 

  194. Larsen TO, Perry NB, Andersen B (2003) Infectopyrone, a potential mycotoxin from Alternaria infectoria. Tetrahedron Lett 44:4511–4513

    Google Scholar 

  195. Proksch P, Ebel R, Edrada RA, Riebe F, Liu H, Diesel A, Bayer M, Li X, Lin WH, Grebenyuk V, Mueller WEG, Draeger S, Zuccaro AA, Schulz B (2008) Sponge-associated fungi and their bioactive compounds: the Suberites case. Bot Mar 51:209–218

    CAS  Google Scholar 

  196. Nair MSR, Carey ST (1975) Metabolites of Pyrenomycetes. II: nectriapyrone, an antibiotic monoterpenoid. Tetrahedron Lett 19:1655–1658

    Google Scholar 

  197. Debbab A, Aly AH, Edrada-Ebel R, Wray V, Müller WEG, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MHG, Lin WH, Mosaddak M, Hakiki A, Proksch P, Ebel R (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72:626–631

    PubMed  CAS  Google Scholar 

  198. Pedras MSC, Chumala PB (2005) Phomapyrones from blackleg causing phytopathogenic fungi: isolation, structure determination, biosyntheses and biological activity. Phytochemistry 66:81–87

    PubMed  CAS  Google Scholar 

  199. Cutignano A, Cimino G, Villani G, Fontana A (2009) Origin of C3-unit in placidenes: further insights into taxa divergence of polypropionate biosynthesis in marine molluscs and fungi. Tetrahedron 65:8161–8164

    CAS  Google Scholar 

  200. Molinski TF, Dalisay DF, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85

    PubMed  CAS  Google Scholar 

  201. Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WL (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    PubMed  CAS  Google Scholar 

  202. Rein KS, Snyder RV (2006) The biosynthesis of polyketide metabolites by dinoflagellates. Adv Appl Microbiol 59:93–125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angelo Fontana or Guido Cimino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Fontana, A., Manzo, E., Ciavatta, M.L., Cutignano, A., Gavagnin, M., Cimino, G. (2012). Biosynthetic Studies Through Feeding Experiments in Marine Organisms . In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_17

Download citation

Publish with us

Policies and ethics