Skip to main content

Aeration of Soils and Plants

  • Reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Gas exchange in soils; Oxygenation of soils and plants; Oxygenology of soils and plants

Definition

Aeration of soils and plants is a term used in wide sense as a name of complex issues related to air transport and distribution in soil and its effect on processes occurring in soil and plants. Sometimes it is used in a narrow sense to denote gas exchange between soil and atmosphere, or only oxygen content in soil air or even as a name for a process of artificially forcing air into the soil (Gliński and Stępniewski, 1985).

Introduction

In soil medium intensive production, transformations, and consumption of a number of gases, which are transported to and from the atmosphere, take place. These processes are not only important for the production of plant biomass but also play an important environmental role.

The most important soil gasses are oxygen (indispensable for root respiration and important for microbial metabolism and for numerous biochemical and chemical processes) and...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Armstrong, J., Armstrong, W., Beckett, P. M., Halder, J. E., Lythe, S., Holt, R., and Sinclair, A., 1996. Pathways of aeration and the mechanisms and beneficial effects of humidity – and Venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany, 54, 177–197.

    Google Scholar 

  • Black, J. G., 1996. Microbiology. Principles and Applications, 3rd edn. Upper Saddle River: Prentice Hall, pp. 144–148.

    Google Scholar 

  • Currie, J. A., 1970. Movement of gases in soil respiration. In Sorption and Transport Processes in Soil. S.C.I. Monograph No. 37, London: Society of Chemical Industry.

    Google Scholar 

  • Currie, J. A., 1975. Soil respiration. Ministry of Agriculture, Fisheries and Food. Technical Bulletin, 29, 461–468.

    Google Scholar 

  • Dixon, N. M., Lovitt, R. W., Morris, J. G., and Dell, D. B., 1998. Growth energetic of Clostridium sporogenes NCIB 8053: modulation by CO2. Journal of Applied Bacteriology, 65, 119–133.

    Google Scholar 

  • Dobermann, A., 2004. A critical assessment of the system of rice intensification (SRI). Agricultural Systems, 79, 261–281.

    Google Scholar 

  • Dommergues, Y., and Mangenot, F., 1970. Ecologie Microbienne du Sol. Paris: Mason.

    Google Scholar 

  • Ghildyal, B. P., 1982. Nature, physical properties and management of submerged rice soils, Transections of the 12th International Congress of Soil Science, New Delhi, India. In Vertisols and Rice Soils of the Tropics, Symposium papers II, Shri S.N. Mehta, New Delhi, India.

    Google Scholar 

  • Gliński, J., and Stępniewski, W., 1985. Soil Aeration and Its Role for Plants. Boca Raton: CRC Press.

    Google Scholar 

  • Højberg, O., Revsbech, N. P., and Tiedje, J. M., 1994. Denitrification in soil aggregates analyzed with microsensors for nitrous oxide and oxygen. Soil Science Society of America Journal, 58, 1691–1698.

    Google Scholar 

  • Horn, R., 1994. Effect of aggregation of soils on water, gas and heat transport. In Schulze, E. E. (ed.), Flux Control in Biological Systems. San Diego: Academic, Vol. 10, pp. 335–361.

    Google Scholar 

  • Horn, R., and Smucker, A., 2005. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil and Tillage Research, 82, 5–14.

    Google Scholar 

  • IRRI, 2005. World Rice Statistics. http://www.rri.org/science/ricestat.

  • Jayakumar, B., Subathra, C., Velu, V., and Ramanathan, S., 2005. Effect of integrated crop management practices on rice (Oryza sativa L.) root volume and rhizosphere redox potential. Agronomy Journal, 4, 311–314.

    Google Scholar 

  • Kanno, T., Miura, Y., Tsuruta, H., and Minami, K., 1997. Methane emission form rice paddy fields in all of Japanese prefecture. Nutrient Cycling in Agroecosystems, 49, 147–151.

    CAS  Google Scholar 

  • Paul, E. A., and Clark, F. E., 1998. Soil Microbiology and Biochemistry. San Diego: Academic.

    Google Scholar 

  • Purnobasuki, H., and Suzuki, M., 2005. Functional anatomy of air conducting network on the pneumatophores of a mangrove plant, Avicennia marina (Forsc.) Vierh. Asian Journal of Plant Sciences, 4, 334–347.

    Google Scholar 

  • Sierra, J., and Renault, P., 1995. Oxygen consumption by soil microorganisms as affected by oxygen and carbon dioxide levels. Applied Soil Ecology, 2, 175–184.

    Google Scholar 

  • So, H. B., and Ringrose-Voase, A. J., 2000. Management of clay soils for rain fed lowland rice-based cropping systems: an overview. Soil and Tillage Research, 56, 3–14.

    Google Scholar 

  • Stępniewski, W., 1981. Oxygen diffusion and strength as related to soil compaction. II. Oxygen diffusion coefficient. Polish Journal of Soil Science, 14, 3–13.

    Google Scholar 

  • Stępniewski, W., and Stępniewska, Z., 2009. Selected oxygen – dependent processes – response to soil management and tillage. Soil and Tillage Research, 102, 193–200.

    Google Scholar 

  • Stoop, W. A., Uphoff, N., and Kassam, A., 2002. A review of agricultural research issues raised by the systems for resource-poor farmers. Agricultural Systems, 71, 249–272.

    Google Scholar 

  • Yan, X., Shi, S., Du, L., and Xing, G., 2000. Pathways of N2O emission from rice paddy soil. Soil Biology and Biochemistry, 32, 437–440.

    CAS  Google Scholar 

  • Zausig, J., Stępniewski, W., and Horn, R., 1993. Oxygen concentration and redox potential gradients in different model soil aggregates at a range of low moisture tensions. Soil Science Society of America Journal, 57, 906–916.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Stępniewski, W. (2011). Aeration of Soils and Plants. In: Gliński, J., Horabik, J., Lipiec, J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_6

Download citation

Publish with us

Policies and ethics