Skip to main content

Bypass Flow in Soil

  • Reference work entry
  • First Online:
Encyclopedia of Agrophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Funnel flow; Macropore flow; Preferential flow

Definition

Bypass flow. This phenomenon has been described also as short circuiting flow of water in soil, indicating a situation in which surface water is connected with water in the subsurface due to rapid infiltration. Here, infiltrating water is percolating along preferential pathways (i.e., macropores, cracks, fissures, decayed-root channels, or worm burrows) thereby bypassing most of the bulk soil volume.

Preferential flow. This is a general expression to describe water movement along preferred flow paths in soil.

Macropore flow. Preferential flow in structured soil along (large capillary- and) non capillary-sized macropores (i.e., cracks or biopores). The expression macropore flowis mostly used to indicate preferential flow in continuous root channels, earthworm burrows, structural fissures, or in shrinkage cracks in well-structured finer-textured soils. Here, flow paths are varying in type from individual macropores to a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Bauters, T. W. J., DiCarlo, D. A., Steenhuis, T. S., and Parlange, J.-Y., 1998. Preferential flow in water repellent sands. Soil Science Society of America Journal, 62, 1185–1190.

    CAS  Google Scholar 

  • Beven, K. J., 1991. Modeling preferential flow: an uncertain future? In Gish, T. J., and Shirmohammadi, A. (eds.), Preferential Flow. St. Joseph: American Society of Agricultural Engineers, pp. 1–11.

    Google Scholar 

  • Beven, K. J., and Germann, P. F., 1982. Macropores and water flow in soils. Water Resources Research, 18, 1311–1325.

    Google Scholar 

  • Bouma, J., 1981. Soil morphology and preferential flow along macropores. Agricultural Water Management, 3, 235–250.

    Google Scholar 

  • Bouma, J., and Dekker, L. W., 1978. Case-study on infiltration into dry clay soil. 1. morphological observations. Geoderma, 20, 27–40.

    Google Scholar 

  • Dekker, L., and Ritsema, C., 1994. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resources Research, 30, 2507–2517.

    Google Scholar 

  • Dekker, L., and Ritsema, C., 2000. Wetting patterns and moisture variability in water repellent Dutch soils. Journal of Hydrology, 231, 148–164.

    Google Scholar 

  • Ehwald, E., Vetterlein, E., and Buchholz, F., 1961. Das Eindringen von Niederschlägen und Wasserbewegungen in sandigen Waldböden. Journal of Plant Nutrition and Soil Science, 93, 202–209.

    CAS  Google Scholar 

  • Flühler, H., Durner, W., and Flury, M., 1996. Lateral solute mixing processes – a key for understanding field-scale transport of water and solutes. Geoderma, 70(2–4), 165–183.

    Google Scholar 

  • Flury, M., Flühler, M., Jury, W. A., and Leuenberger, J., 1994. Susceptibility of soils to preferential flow of water: a field study. Water Resources Research, 30, 1945–1954.

    Google Scholar 

  • Gerke, H. H., 2006. Review Article: Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169, 382–400.

    CAS  Google Scholar 

  • Gerke, H. H., and van Genuchten, M. T., 1993a. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 29, 305–319.

    CAS  Google Scholar 

  • Gerke, H. H., and van Genuchten, M. T., 1993b. Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models. Water Resources Research, 29, 1225–1238.

    Google Scholar 

  • Gerke, H. H., and van Genuchten, M. T., 1996. Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media. Advances in Water Resources, 19, 343–357.

    Google Scholar 

  • Gerke, H. H., and Köhne, J. M., 2004. Dual-permeability modeling of preferential bromide leaching from a tile drained glacial till agricultural field. Journal of Hydrology, 289, 239–257.

    CAS  Google Scholar 

  • Gerke, H. H., Dušek, J., Vogel, T., and Köhne, J. M., 2007. Two-dimensional dual-permeability analyses of a bromide tracer experiment on a tile-drained field. Vadose Zone Journal, 6, 651–667.

    CAS  Google Scholar 

  • Germann, P., 1985. Kinematic wave approach to infiltration and drainage into and from soil macropores. Transactions of the American Society of Agricultural Engineers, 28, 745–749.

    Google Scholar 

  • Germann, P., and Beven, K. J., 1985. Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resources Research, 21, 990–996.

    Google Scholar 

  • Gish, T. J., and Shirmohammadi, A. (eds.), 1991. Preferential flow. Chicago: Proceedings of the National Symposium, 16–17 December 1991; St. Joseph: American Society of Agricultural Engineering, p. 408.

    Google Scholar 

  • Granovsky, A. V., McCoy, E. L., Dick, W. A., Shipithalo, M. J., and White, W. M., 1993. Water and chemical transport through long-term no-till and plowed soils. Soil Science Society of America Journal, 57, 1560–1567.

    CAS  Google Scholar 

  • Greco, R., 2002. Preferential flow in macroporous swelling soil with internal catchment: model development and applications. Journal of Hydrology, 269(3–4), 150–168.

    Google Scholar 

  • Green, W. H., and Ampt, G. A., 1911. Studies on soil physics. I. The flow of water and air through soils. Journal of Agricultural Science, 4, 1–24.

    Google Scholar 

  • Hamdi, M., Durnford, D., and Loftis, J., 1994. Bromide transport under sprinkler and ponded irrigation. Journal of Irrigation and Drainage Engineering, 120, 1086–1097.

    Google Scholar 

  • Hangen, E., Gerke, H. H., Schaaf, W., and Hüttl, R. F., 2004. Flow path visualization at a lignitic mine soil using iodine-starch staining. Geoderma, 120, 121–135.

    Google Scholar 

  • Hendrickx, J. M. H., and Flury, M., 2001. Uniform and preferential flow mechanisms in the vadose zone. In Conceptual Models of Flow and Transport in the Fractured Vadose Zone. Washington, DC: National Research Council, National Academy Press, pp. 149–187.

    Google Scholar 

  • Janssen, M., and Lennartz, B., 2008. Characterization of preferential flow pathways through paddy bunds with dye tracer tests. Soil Science Society of America Journal, 72(6), 1756–1766.

    CAS  Google Scholar 

  • Jarvis, N., 1994. The MACRO model (version 3.1) – Technical description and sample simulations. Ph.D thesis 19, Uppsala: Swedish University of Agricultural Sciences, p. 51.

    Google Scholar 

  • Jarvis, N. J., Villholt, K. G., and Ulen, B., 1999. Modelling particle mobilization and leaching in macroporous soil. European Journal of Soil Sciences, 50, 621–632.

    Google Scholar 

  • Jarvis, N. J., 2007. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Sciences, 58, 523–546.

    Google Scholar 

  • Kasteel, R., 1997. Solute transport in an unsaturated field soil: describing heterogeneous flow fields using spatial distribution of hydraulic properties. PhD dissertation thesis 12477, Zürich: ETH Zürich, 108pp.

    Google Scholar 

  • Kung, K.-J. S., 1990. Preferential flow in a sandy vadose zone: 1. Field observation. Geoderma, 46, 51–58.

    Google Scholar 

  • Larsbo, M., Roulier, S., Semo, F., Kasteel, R., and Jarvis, N., 2005. An improved dual-permeability model of water flow and solute transport in the vadose zone. Vadose Zone Journal, 4, 398–406.

    Google Scholar 

  • Larsson, M. H., and Jarvis, N. J., 1999. Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil. Journal of Hydrology, 215, 153–171.

    CAS  Google Scholar 

  • Lawes, J. B., Gilbert, J. H., and Warington, R., 1881. On the amount and composition of the rain and drainage-waters collected at Rothamsted, Part I and II. Journal of the Royal Agricultural Society of England, London, 17, 241–279.

    Google Scholar 

  • Liu, I. Y., Waldron, L. J., Wong, S. T. S., Anderson, S. H., and Hopmans, J. W., 1994. Application of nuclear magnetic resonance imaging to study preferential water flow through root channels. Soil Science Society America Special Publication, 36, pp. 135–148, Madison: Americam Society of Agronomy.

    Google Scholar 

  • Luxmoore, R. J., 1981. Micro-, meso-, and macroporosity of soil. Soil Science Society of America Journal, 45, 671–672.

    Google Scholar 

  • Maruyama, T., Tada, A., Iwama, K., and Horino, H., 2003. Direct observation of soil water movement through soil macropores using soft X-rays and stereographing. Soil Science, 168(2), 119–127.

    CAS  Google Scholar 

  • Mori, Y., Maruyama, T., and Mitsuno, T., 1999. Soft x-ray radiography of drainage patterns of structured soils. Soil Science Society of America Journal, 63(4), 733–740.

    CAS  Google Scholar 

  • Quisenberry, V. L., and Phillips, R. E., 1976. Percolation of surface-applied water in the field. Soil Science Society of America Journal, 40, 484–489.

    CAS  Google Scholar 

  • Ritsema, C. J., and Dekker, L. W., 1994. How water moves in a water-repellent sandy soil. 2. Dynamics of fingered flow. Water Resources Research, 30, 2517–2531.

    Google Scholar 

  • Ritsema, C. J., and Dekker, L. W., 1995. Distribution flow – a general process in the top layer of water repellent soils. Water Resources Research, 31, 1187–1200.

    Google Scholar 

  • Sander, T., and Gerke, H. H., 2007. Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone Journal, 6, 105–115, doi:10.2136/vzj2006.0035.

    Google Scholar 

  • Saxena, R. K., Jarvis, N. J., and Bergstrom, L., 1994. Interpreting non-steady state tracer breakthrough experiments in sand and clay soils using a dual-porosity model. Journal of Hydrology, 162, 279–298.

    CAS  Google Scholar 

  • Seiler, K.-P., von Löwenstern, S., and Schneider, S., 2002. Matrix and bypass-flow in quaternary and tertiary sediments of agricultural areas in south Germany. Geoderma, 105, 299–306.

    CAS  Google Scholar 

  • Shipitalo, M. J., and Edwards, W. M., 1996. Effects of initial water content on macropore / matrix flow and transport of surface-applied chemicals. Journal of Environmental Quality, 25(4), 662–670.

    CAS  Google Scholar 

  • Šimůnek, J., Jarvis, N. J., van Genuchten, M. T., and Gärdenäs, A., 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272, 14–35.

    Google Scholar 

  • Tseng, P.-H., Sciortino, A., and van Genuchten, M Th, 1995. A partitioned solution procedure for simulating water flow in a variable saturated dual-porosity medium. Advances in Water Resources, 18, 335–343.

    Google Scholar 

  • Van Stiphout, T. P. J., van Lanen, H. A. J., Boersma, O. H., and Bouma, J., 1987. The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil. Journal of Hydrology, 95(1–2), 1–11.

    Google Scholar 

  • Wang, J. S. Y., 1991. Flow and transport in fractured rocks. Reviews in Geophysics, 29(Suppl), 254–262.

    Google Scholar 

  • Weiler, M., and Naef, F., 2003. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes, 17(2), 477–493.

    Google Scholar 

  • White, R. E., 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Advances in Soil Science, 3, 95–120.

    Google Scholar 

  • Wopereis, M. C. S., Bouma, J., Kropff, M. J., and Sanidad, W. B., 1994. Reducing bypass flow through a dry, cracked and previously puddled rice soil. Soil and Tillage Research, 29, 1–11.

    Google Scholar 

  • Youngs, E. G., and Leeds-Harrison, P. B., 1990. Aspects of transport processes in aggregated soils. Journal of Soil Science, 41(665), 675.

    Google Scholar 

  • Zehe, E., and Flühler, H., 2001. Preferential transport of isoproturon at a plot scale and a field-scale tile-drained site. Journal of Hydrology, 247, 100–115.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst H. Gerke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Gerke, H.H. (2011). Bypass Flow in Soil. In: Gliński, J., Horabik, J., Lipiec, J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_23

Download citation

Publish with us

Policies and ethics