Skip to main content

Root Water Uptake: Toward 3-D Functional Approaches

  • Reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Root water uptake (water extraction or water absorption): water flow from the soil to the root.

3D functional approaches (or functional–structural plant modeling): modeling approach aiming at representing virtual plants with their three-dimensional (3D) architecture and selected physiological functions.

Introduction

Water is an essential resource for plant life. Typically, cropped plants transpire 200–1,000 kg of water for each kilogram of dry matter produced (Martin et al., 1976), and this water is principally extracted from the soil by the roots. Therefore, modeling of soil water uptake by plant roots is of importance for a series of environmental and agronomic purposes. Numerous practical applications like yield prediction, irrigation management, or pollutant fate prediction under cropped fields need a detailed understanding of the interactions between soil water and roots to be investigated as well as advanced modeling approaches.

The uptake of water by roots is mainly a...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Amenu, G. G., and Kumar, P., 2008. A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrology and Earth System Sciences, 12, 55–74.

    Google Scholar 

  • Carminati, A., Vetterlein, D., Weller, U., Vogel, H. J., and Oswald, S. E., 2009. When roots lose contact. Vadose Zone Journal, 8, 805–809.

    Google Scholar 

  • Clausnitzer, V., and Hopmans, J. W., 1994. Simultaneous modeling of transient 3-dimensional root-growth and soil-water flow. Plant and Soil, 164, 299–314.

    CAS  Google Scholar 

  • De Dorlodot, S., Forster, B., Pages, L., Price, A., Tuberosa, R., and Draye, X., 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 12, 474–481.

    PubMed  Google Scholar 

  • De Willigen, P., and Van Noordwijk, M., 1987. Roots, Plant Production and Nutrient Use Efficiency. PhD thesis, University of Agriculture, Wageningen.

    Google Scholar 

  • Doussan, C., Pages, L., and Vercambre, G., 1998. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption - model description. Annals of Botany, 81, 213–223.

    Google Scholar 

  • Doussan, C., Pierret, A., Garrigues, E., and Pages, L., 2006. Water uptake by plant roots: II - modelling of water transfer in the soil root-system with explicit account of flow within the root system - comparison with experiments. Plant and soil, 283, 99–117.

    CAS  Google Scholar 

  • Draye, X., Kim, Y., Lobet, G., and Javaux, M., 2010. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. Journal of Experimental Botany, 61, 2145–2155, doi:10.1093/jxb/erq077.

    CAS  PubMed  Google Scholar 

  • Feddes, RA., and Raats, PAC., 2004. Parameterizing the soil–water–plant root system. In Feddes, R. A. et al. (eds.), Unsaturated-Zone Modeling: Progress, Challenges, Applications. Wageningen UR Frontis Series, pp. 95–141.

    Google Scholar 

  • Fitter, A. H., 1987. An architectural approach to the comparative ecology of plant-root systems. New Phytologist, 106, 61–77.

    Google Scholar 

  • Garrigues, E., Doussan, C., and Pierret, A., 2006. Water uptake by plant roots: I -Formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant and soil, 283, 83–98.

    CAS  Google Scholar 

  • Green, S., Kirkham, M., and Clothier, B., 2006. Root uptake and transpiration: from measurements and models to sustainable irrigation. Agricultural Water Management, 86, 165–176.

    Google Scholar 

  • Gregory, P. J., 2006. Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science, 57, 2–12.

    Google Scholar 

  • Hardelauf, H., Javaux, M., Herbst, M., Gottschalk, S., Kasteel, R., Vanderborght, J., and Vereecken, H., 2007. PARSWMS: a parallelized model for simulating 3-D water flow and solute transport in variably saturated soils. Vadose Zone Journal, 5, 255–259.

    Google Scholar 

  • Hodge, A., Berta, G., Doussan, C., Merchan, F., and Crespi, M., 2009. Plant root growth, architecture and function. Plant and Soil, 321, 153–187.

    CAS  Google Scholar 

  • Javaux, M., Schröder, T., Vanderborght, J., and Vereecken, H., 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 7, 1079–1088.

    Google Scholar 

  • Landsberg, J. J., and Fowkes, N. D., 1978. Water-movement through plant roots. Annals of Botany, 42, 493–508.

    Google Scholar 

  • Luster, J., Gottlein, A., Nowack, B., and Sarret, G., 2009. Sampling, defining, characterising and modeling the rhizosphere-the soil science tool box. Plant and Soil, 321, 457–482.

    CAS  Google Scholar 

  • Lynch, J. P., 2007. Roots of the second green revolution. Australian Journal of Botany, 55, 493–512.

    Google Scholar 

  • Martin, J., Leonard, W., and Stamp, D., 1976. Principles of Field Crop Production, 3rd edn. New York: Macmillan.

    Google Scholar 

  • Moradi, A. B., Conesa, H. M., Robinson, B., Lehmann, E., Kuehne, G., Kaestner, A., Oswald, S., and Schulin, R., 2009. Neutron radiography as a tool for revealing root development in soil: capabilities and limitations. Plant and Soil, 318, 243–255.

    CAS  Google Scholar 

  • Oswald, S. E., Menon, M., Carminati, A., Vontobel, P., Lehmann, E., and Schulin, R., 2008. Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography. Vadose Zone Journal, 7, 1035–1047.

    Google Scholar 

  • Pierret, A., Doussan, C., Capowiez, Y., Bastardie, F., and Pages, L., 2007. Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone Journal, 6, 269–281.

    Google Scholar 

  • Pohlmeier, A., Oros-Peusquens, A., Javaux, M., Menzel, M. I., Vanderborght, J., Kaffanke, J., Romanzetti, S., Lindenmair, J., Vereecken, H., and Shah, N. J., 2008. Changes in soil water content resulting from ricinus root uptake monitored by magnetic resonance imaging. Vadose Zone Journal, 7, 1010–1017.

    Google Scholar 

  • Roose, T., and Fowler, A. C., 2004. A model for water uptake by plant roots. Journal of Theoretical Biology, 228, 155–171.

    CAS  PubMed  Google Scholar 

  • Schneider, C. L., Attinger, S., Delfs, J. O., and Hildebrandt, A., 2010. Implementing small scale processes at the soil-plant interface - the role of root architectures for calculating root water uptake profiles. Hydrology and Earth System Sciences, 14, 279–289.

    Google Scholar 

  • Schroder, T., Javaux, M., Vanderborght, J., Korfgen, B., and Vereecken, H., 2009a. Implementation of a microscopic soil-root hydraulic conductivity drop function in a three-dimensional soil-root architecture water transfer model. Vadose Zone Journal, 8, 783–792.

    Google Scholar 

  • Schroder, T., Tang, L., Javaux, M., Vanderborght, J., Korfgen, B., and Vereecken, H., 2009b. A grid refinement approach for a three-dimensional soil-root water transfer model. Water Resources Research, 45, W10412, doi:10.1029/2009WR007873.

    Google Scholar 

  • Schymanski, S. J., Sivapalan, M. et al., 2008. An optimality-based model of the coupled soil moisture and root dynamics. Hydrology and Earth System Science, 12, 913–932.

    Google Scholar 

  • Siqueira, M., Katul, G., and Porporato, A., 2008. Onset of water stress, hysteresis in plant conductance, and hydraulic lift: scaling soil water dynamics from millimeters to meters. Water Resources Research, 44, W01432.

    Google Scholar 

  • Sperry, J. S., Stiller, V., and Hacke, U. G., 2003. Xylem hydraulics and the soil-plant-atmosphere continuum: opportunities and unresolved issues. Agronomy Journal, 95, 1362–1370.

    Google Scholar 

  • Steudle, E., and Peterson, C. A., 1998. How does water get through roots? Journal of Experimental Botany, 49, 775–788.

    CAS  Google Scholar 

  • Tardieu, F., 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science, 8, 9–14.

    CAS  PubMed  Google Scholar 

  • Vandeleur, R., Niemietz, C., Tilbrook, J., and Tyerman, S. D., 2005. Roles of aquaporins in root responses to irrigation. Plant and Soil, 274, 141–161.

    CAS  Google Scholar 

  • Vrugt, J. A., Van Wijk, M. T., Hopmans, J. W., and Simunek, J., 2001. One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resources Research, 37, 2457–2470.

    Google Scholar 

  • Wu, L., Mcgechan, M. B., Watson, C. A., and Baddeley, J. A., 2005. Developing existing plant root system architecture models to meet future agricultural challenges. Advances in Agronomy, 85, 181–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Javaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Javaux, M., Draye, X., Doussan, C., Vanderborght, J., Vereecken, H. (2011). Root Water Uptake: Toward 3-D Functional Approaches. In: Gliński, J., Horabik, J., Lipiec, J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_224

Download citation

Publish with us

Policies and ethics