Skip to main content

Laser Patterning Technologies

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Organic Light-Emitting Diodes
  • 224 Accesses

Abstract

AMOLED is widely used in TV applications as well as mobile displays. However, they are still being mass-produced using FMM (fine metal mask) method which is not appropriate for high resolution and large area technology. Therefore, the research on the laser patterning technology suitable for the production of the next-generation AMOLEDs (large area as well as ultrahigh resolution) has been continuously conducted. We will examine the progress and current level of laser patterning technology in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Notes

  • Adachi C, Thompson ME, Forrest SR (2002) Architectures for efficient electrophosphorescent organic light-emitting devices. IEEE J Select Top Quant Electron 8:372

    Article  ADS  Google Scholar 

  • Arnold C, Serra P, Piqué A (2007) Laser Direct-Write Techniques for Printing of Complex Materials. M R S Bull 32:23

    Article  Google Scholar 

  • Bai Y, Feng J, Liu Y–F, Song J–F, Simonen J, Jin Y, Chen Q–D, Zi J, Sun H–B (2011) Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation. Org Electron 12:1927

    Article  Google Scholar 

  • Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151

    Article  ADS  Google Scholar 

  • Bharathan J, Yang Y (1998) Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl Phys Lett 72:2660

    Article  ADS  Google Scholar 

  • Birrell SE, Cable A, Visser J, Young LJ, Kwak J, Eldring J, Balley TH, Piqué A, Auyeung R (2011) Method of performing an operation with rheological compound. U.S. Patent. 8,025,542

    Google Scholar 

  • Blanchet GB, Loo T-L, Rogers AJ, Gao F, Fincher CR (2003) Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl Phys Lett 82:463

    Article  ADS  Google Scholar 

  • Blonder GE, Higashi GS, Fleming CG (1987) Laser projection patterned aluminum metallization for integrated circuit applications. Appl Phys Lett 50:766

    Article  ADS  Google Scholar 

  • Bohandy J, Kim BF, Adrian FJ (1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60:1538

    Article  ADS  Google Scholar 

  • Boroson M, Tutt L, Nguyen K, Preuss D, Culver M, Phelan G (2005) 16.5L: Late-News-Paper: Non-Contact OLED Color Patterning by Radiation-Induced Sublimation Transfer (RIST). SID Int Symp Dig Tech Pap 36:972

    Article  Google Scholar 

  • Bubb DM, Ringeisen BR, Callahan JH, Galicia M, Vertes A, Horwitz JS, McGill RA, Houser EJ, Wu PK, Piqué A, Chrisey DB (2001) Vapor deposition of intact polyethylene glycol thin films. Appl Phys A Mater Sci Process 73:121

    Article  ADS  Google Scholar 

  • Cha SJ, Jeon JH, Suh MC (2014) Full Color Organic Light Emitting Diodes with Laser-patterned Optical Path-length Compensation Layer. Org Electron 15:2830

    Article  Google Scholar 

  • Cha SJ, Han NS, Song JK, Park S–R, Jeon YM, Suh MC (2015) Efficient deep blue fluorescent emitter showing high external quantum efficiency. Dyes Pigments 120:200

    Article  Google Scholar 

  • Chang S-C, Liu J, Bharathan J, Yang Y, Onohara J, Kido J (1999) Multicolor Organic Light‐Emitting Diodes Processed by Hybrid Inkjet Printing. Adv Mater 11:734

    Article  Google Scholar 

  • Chin BD (2007) Effective hole transport layer structure for top-emitting organic light emitting devices based on laser transfer patterning. J Phys D Appl Phys 40:5541

    Article  ADS  Google Scholar 

  • Cho SH, Lee SM, Suh MC (2012a) Enhanced efficiency of organic light emitting devices (OLEDs) by control of laser imaging condition. Org Electron 13:833

    Article  Google Scholar 

  • Cho SH, Suh MC, Kim JW (2012b) The operating voltage behavior of green fluorescent organic light emitting diode with blue common layer structure during laser imaging process. Org Electron 13:2945

    Article  Google Scholar 

  • Chrisey DB, Piqué A, Fitz-Gerald J, Auyeung RCY, McGill RA, Wu HD, Duignan M (2000a) Full Color Organic Light Emitting Diodes with Laser-patterned Optical Path-length Compensation Layer. Appl Surf Sci 154:593

    Article  ADS  Google Scholar 

  • Chrisey DB, Piqué A, Modi R, Wu HD, Auyeung RCY, Young HD (2000b) Direct writing of conformal mesoscopic electronic devices by MAPLE DW. Appl Surf Sci 168:345

    Article  ADS  Google Scholar 

  • Chrisey DB, McGill RA, Piqué A (2001) Matrix assisted pulsed laser evaporation direct write. US Patent 6,177,151

    Google Scholar 

  • Chrisey DB, Piqué A, McGill RA, Horwitz JS, Ringeisen BR (2003) Laser Deposition of Polymer and Biomaterial Films. Chem Rev 103:553

    Article  Google Scholar 

  • Chung SJ, Lee J–H, Jeong JW, Kim J-J, Hong YT (2009) Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes. Appl Phys Lett 94:253302

    Article  ADS  Google Scholar 

  • Ellis EW, Foley DM, Arnold DR (1992) Ablation-transfer imaging/recording. U.S. Patent. 5,171,650

    Google Scholar 

  • Fardel R, Nagel M, Nuesch F, Lippert T, Wokaun A (2007) Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Appl Phys Lett 91:061103

    Article  ADS  Google Scholar 

  • Fehse K, Meerheim R, Walzer K, Leo K, Lövenich W, Elschner A (2008) Lifetime of organic light emitting diodes on polymer anodes. Appl Phys Lett 93:083303

    Article  ADS  Google Scholar 

  • Fitz-Gerald JM, Piqué A, Chrisey DB, Rack PD, Zeleznik M, Auyeung RCY, Lakeou S (2000a) Laser direct writing of phosphor screens for high-definition displays. Appl Phys Lett 76:1386

    Article  ADS  Google Scholar 

  • Fitz-Gerald JM, Wu HD, Piqué A, Horwitz JS, Auyung RCY, Chang W, Kim WJ, Chrisey DB (2000b) MAPLE Direct Write: a new approach to fabricate ferroelectric thin film devices in air at room temperature. Integr Ferroelec 28:13

    Article  Google Scholar 

  • Fogarassy E (1990) Basic mechanisms and application of the laser-induced forward transfer for high-Tc superconducting thin film deposition. Proc SPIE 1394:169

    Article  ADS  Google Scholar 

  • Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911

    Article  ADS  Google Scholar 

  • Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Santos DAD, Brédas JL, Lögdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397:121

    Article  ADS  Google Scholar 

  • Gong S, Fu Q, Zeng W, Zhong C, Yang C, Ma D, Qin J (2012) Solution-Processed Double-Silicon-Bridged Oxadiazole/Arylamine Hosts for High-Efficiency Blue Electrophosphorescence. Chem Mater 24:3120

    Article  Google Scholar 

  • Ha Y-G, You E-A, Kim B-J, Choi J-H (2005) Fabrication and characterization of OLEDs using MEH-PPV and SWCNT nanocomposites. Synth Met 153:205

    Article  Google Scholar 

  • Hebner TR, Wu CC, Marcy D, Lu MH, Sturm JC (1998) Ink-jet printing of doped polymers for organic light emitting devices. Appl Phys Lett 72:519

    Article  ADS  Google Scholar 

  • Hirano T, Matsuo K, Kohinata K, Hanawa K, Matsumi T, Matsuda E, Matsuura R, Ishibashi T (2007) Novel Laser Transfer Technology for Manufacturing Large-Sized OLED Displays. SID Int Symp Dig Tech Pap 38:1592

    Article  Google Scholar 

  • Höfle S, Bernhard C, Bruns M, Kübel C, Scherer T, Lemmer U, Colsmann A (2015) Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture. ACS Appl Mater Interfaces 7:8132

    Article  Google Scholar 

  • Ikai M, Tokito S, Sakamoto Y, Suzuki T, Taga Y (2001) Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl Phys Lett 79:156

    Article  ADS  Google Scholar 

  • Inui T, Mandamparambil R, Akari T, Abbel R, Koga H, Nogi M, Suganuma K (2015) Laser-induced forward transfer of high-viscosity silver precursor ink for non-contact printed electronics. RSC Adv 5:77942

    Article  Google Scholar 

  • Jeon WS, Park TJ, Kim SY, Pode R, Jang J, Kwon JH (2008) Low roll-off efficiency green phosphorescent organic light-emitting devices with simple double emissive layer structure. Appl Phys Lett 93:063303

    Article  ADS  Google Scholar 

  • Jou J–H, Sahoo S, Kumar S, Yu H–H, Fang P–H, Singh M, Krucaite G, Volyniuk D, Grazulevicius JV, Grigalevicius S (2015) A wet-and dry-process feasible carbazole type host for highly efficient phosphorescent OLEDs. J Mater Chem C 3:12297

    Article  Google Scholar 

  • Kántor Z, Tóth Z, Szörényi T, Tóth AL (1994) Deposition of micrometer-sized tungsten patterns by laser transfer technique. Appl Phys Lett 64:3506

    Article  ADS  Google Scholar 

  • Kashiwabara M, Hanawa K, Asaki R, Kobori I, Matsuura R, Yamada H, Yamamoto T, Ozawa A, Sato Y, Terada S, Yamada J, Sasaoka T, Tamura S, Urabe T (2004) Advanced AM-OLED Display Based on White Emitter with Microcavity Structure. SID Int Symp Dig Tech Pap 35:1017

    Google Scholar 

  • Kim C, Burrows PE, Forrest SR (2000) Micropatterning of organic electronic devices by cold-welding. Science 288:831

    Article  ADS  Google Scholar 

  • Kim MH, Song MW, Lee ST, Kim HD, Oh JS, Chung HK (2006) Control of Emission Zone in a Full Color AMOLED with a Blue Common Layer. SID Int Symp Dig Tech Pap 37:135

    Article  Google Scholar 

  • Kim SH, Jang J, Lee JY (2007a) Relationship between host energy levels and device performances of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure. Appl Phys Lett 91:083511

    Article  ADS  Google Scholar 

  • Kim MH, Suh MC, Kwon JH, Chin BD (2007b) Molecularly doped electrophosphorescent emitters for solution processed and laser patterned devices. Thin Solid Films 515:4011

    Article  ADS  Google Scholar 

  • Ko SH, Pan H, Ryu SG, Misra N, Grigoropoulos CP, Park HK (2008) Nanomaterial enabled laser transfer for organic light emitting material direct writing. Appl Phys Lett 93:151110

    Article  ADS  Google Scholar 

  • Kordás K, Leppävuori S, Uusimäki A, George TF, Nánai L, Vajtai R, Bali K, Békési J (2001) Palladium thin film deposition on polyimide by CW Ar+ laser radiation for electroless copper plating. Thin Solid Films 384:185

    Article  ADS  Google Scholar 

  • Kröger M, Hüske M, Dobbertin T, Meyer J, Krauwald H, Riedl T, Johannes H–H, Kowalsky W (2005) Laser induced thermal imaging of vacuum-coated OLED materials. Proc SPIE 5840:177

    Article  ADS  Google Scholar 

  • Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee H-E, Adachi C, Burrows PE, Forrest SR (2001) Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J Am Chem Soc 123:4304

    Article  Google Scholar 

  • Lamansky S, Hoffend TR Jr, Le H, Jones V, Wolk MB, Tolbert WA (2005) Laser induced thermal imaging of vacuum-coated OLED materials. Proc SPIE 5937:593702

    Article  Google Scholar 

  • Lee JY, Lee ST (2004) Laser-Induced Thermal Imaging of Polymer Light-Emitting Materials on Poly(3,4-ethylenedioxythiophene): Silane Hole-Transport Layer. Adv Mater 16:51

    Article  Google Scholar 

  • Lee ST, Lee JY, Kim MH, Suh MC, Kang TM, Choi YJ, Park JY, Kwon JH, Chung HK (2002) A New Patterning Method for Full-Color Polymer Light-Emitting Devices: Laser Induced Thermal Imaging (LITI). SID Int Symp Dig Tech Pap 33:784

    Article  Google Scholar 

  • Lee ST, Chin BD, Kim MH, Kang TM, Song MW, Lee JH, Kim HD, Chung HK, Wolk MB, Bellmann E, Baetzold JP, Lamansky S, Savvateev V, Hoffend TR Jr, Staral JS, Roberts RR, Li Y, Int SID (2004) A Novel Patterning Method for Full-Color Organic Light-Emitting Devices: Laser Induced Thermal Imaging (LITI). Symp Dig Tech Pap 35:1008

    Article  Google Scholar 

  • Lee J–H, Wu M–H, Chao C–C, Chen H–L, Leung M–K (2005a) High efficiency and long lifetime OLED based on a metal-doped electron transport layer. Chem Phys Lett 416:234

    Article  ADS  Google Scholar 

  • Lee J–H, Wu C-I, Liu S–W, Huang C–A, Chang Y (2005b) Mixed host organic light-emitting devices with low driving voltage and long lifetime. Appl Phys Lett 86:103506

    Article  ADS  Google Scholar 

  • Lee ST, Suh MC, Kang TM, Kwon YG, Lee JH, Kim HD, Chung HK (2007) LITI (Laser Induced Thermal Imaging) Technology for High-Resolution and Large-Sized AMOLED. SID Int Symp Dig Tech Pap 38:1588

    Article  Google Scholar 

  • Lee H, Lee J, Jeon P, Jeong K, Yi Y, Kim TG, Kim JW, Lee JW (2012) Highly enhanced electron injection in organic light-emitting diodes with an n-type semiconducting MnO2 layer. Org Electron 13:820

    Article  Google Scholar 

  • Lee DR, Kim BS, Lee CW, Im Y, Yook KS, Hwang S-H, Lee JY (2015) Above 30% External Quantum Efficiency in Green Delayed Fluorescent Organic Light-Emitting Diodes. ACS Appl Mater Interfaces 7:9625

    Article  Google Scholar 

  • Lee JS, Chen H–F, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR (2016) Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat Mater 15:92

    Article  ADS  Google Scholar 

  • McGill RA, Chrisey DB (2000) Method of producing a film coating by matrix assisted pulsed laser deposition. U.S. Patent. 6,025,036

    Google Scholar 

  • Meerheim R, Scholz S, Olthof S, Schwartz G, Reineke S, Walzer K, Leo K (2008) Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J Appl Phys 104:014510

    Article  ADS  Google Scholar 

  • Modi R, Wu HD, Auyeung RCY, Gilmore CM, Chrisey DB (2001) Direct writing of polymer thick film resistors using a novel laser transfer technique. J Mater Res 16:3214

    Article  ADS  Google Scholar 

  • Noach S, Faraggi EZ, Cohen G, Avny Y, Neumann R, Davidov D, Lewis A (1996) Microfabrication of an electroluminescent polymer light emitting diode pixel array. Appl Phys Lett 69:3650

    Article  ADS  Google Scholar 

  • Ou Q-D, Zhou L, Li Y-Q, Shen S, Chen J-D, Li C, Wang Q-K, Lee S-T, Tang J-X (2014) Extremely Efficient White Organic Light-Emitting Diodes for General Lighting. Adv Funct Mater 24:7249

    Article  Google Scholar 

  • Park SM, Kim YH, Yi YJ, Oh H–Y, Kim JW (2010) Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices. Appl Phys Lett 97:063308

    Article  ADS  Google Scholar 

  • Parka M, Chona BH, Kima HS, Jeounga SC, Kim DH, Lee J–I, Chu HY, Kim HR (2006) Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application. Opt Lasers Eng 44:138

    Article  Google Scholar 

  • Perçin G, Lundgren TS, Khuri-Yakub BT (1998) Controlled ink-jet printing and deposition of organic polymers and solid particles. Appl Phys Lett 73:2375

    Article  ADS  Google Scholar 

  • Perumal A, Faber H, Yaacobi-Gross N, Pattanasattayanvong P, Burgess C, Jha S, Mclachlan MA, Stavrinou PN, Anthopoulos TD, Bradley DDC (2015) High-Efficiency, Solution-Processed, Multilayer Phosphorescent Organic Light-Emitting Diodes with a Copper Thiocyanate Hole-Injection/Hole-Transport Layer. Adv Mater 27:93

    Article  Google Scholar 

  • Pfleging W, Baldus O (2006) Laser patterning and welding of transparent polymers for microfluidic device fabrication. Proc SPIE 6107:610705

    Article  Google Scholar 

  • Piqué A (2011) The matrix-assisted pulsed laser evaporation (MAPLE) process: origins and future directions. Appl Phys A Mater Sci Process 105:517

    Article  ADS  Google Scholar 

  • Piqué A, McGill RA, Chrisey DB, Leonhardt D, Mslna TE, Spargo BJ, Callahan JH, Vachet RW, Chung R, Bucaro MA (1999a) Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films 536:355

    Google Scholar 

  • Piqué A, Chrisey DB, Auyeung RCY, Fitz-Gerald J, Wu HD, McGill RA, Lakeou S, Wu PK, Nguyen V, Duignan M (1999b) A novel laser transfer process for direct writing of electronic and sensor materials. Appl Phys A Mater Sci Process 69:S279

    Article  ADS  Google Scholar 

  • Piqué A, Wu P, Ringeisen BR, Bubb DM, Melinger JS, McGill RA, Chrisey DB (2002) Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Appl Surf Sci 186:408

    Article  ADS  Google Scholar 

  • Ringeisen BR, Chrisey DB, Piqué A, Young HD, Modi R, Bucaro M, Jones-Meehan J, Spargo BJ (2002) Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23:161

    Article  Google Scholar 

  • Sasaki KY, Talbot JB (1999) Deposition of powder phosphors for information displays. Adv Mater 11:91

    Article  Google Scholar 

  • Small CE, Tsang S–W, Kido J, So SK, So F (2012) Origin of enhanced hole injection in inverted organic devices with electron accepting interlayer. Adv Funct Mater 22:3261

    Article  Google Scholar 

  • Suh MC, Chin BD, Kim M-H, Kang TM, Lee ST (2003) Enhanced luminance of blue light-emitting polymers by blending with hole-transporting materials. Adv Mater 15:1254

    Article  Google Scholar 

  • Suh MC, Kang TM, Cho SW, Kwon YG, Kim HD, Chung HK (2009) Large-Area Color-Patterning Technology for AMOLED. SID Int Symp Dig Tech Pap 40:794

    Article  Google Scholar 

  • Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:21

    Article  Google Scholar 

  • Tien A–C, Sacks ZS, Mayer FJ (2001) Precision laser metallization. Microelectron Eng 56:273

    Article  Google Scholar 

  • Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F (2003) Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Appl Phys Lett 83:569

    Article  ADS  Google Scholar 

  • Tolbert WA, Sandy lee L–Y, Doxtader MM, Ellis EW, Dlott DD, Imag J (1993) High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms. Sci Technol 37:411

    Google Scholar 

  • Tóth Z, Szörenyi T, Tóth AL (1993) Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning. Appl Surf Scie 69:317

    Article  ADS  Google Scholar 

  • Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233

    Article  Google Scholar 

  • Wang S, Wang X, Yao B, Zhang B, Ding J, Xie Z, Wang L (2015) Solution-processed phosphorescent organic light-emitting diodes with ultralow driving voltage and very high power efficiency. Sci Rep 5:12487

    Article  ADS  Google Scholar 

  • Wang Y, Sun N, Curchod BFE, Male L, Ma D, Fan J, Liu Y, Zhu W, Baranoff T (2016) Tuning the oxidation potential of 2-phenylpyridine-based iridium complexes to improve the performance of bluish and white OLEDs. J Mater Chem C 4:3738

    Article  Google Scholar 

  • Watanabe S, Ide N, Kido J (2007) High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers. Jpn J Appl Phys 46:1186

    Article  ADS  Google Scholar 

  • Wolk MB, Baetzold JP, Bellmann E, Hoffend TR Jr, Lamansky S, Li Y, Roberts RR, Savvateev V, Staral JS, Tolbert WA (2004) Laser thermal patterning of OLED materials. Proc SPIE 5519:12

    Article  ADS  Google Scholar 

  • Wolk MB, Lamansky S, Tolbert WA (2008) Progress in Laser Induced Thermal Imaging of OLEDs. SID Int Symp Dig Tech Pap 39:511

    Article  Google Scholar 

  • Wong MY, Xie G, Tourbillon C, Sandroni M, Cordes DB, Slawin AMZ, Samuel IDW, Zysman-Colman E (2015) Formylated chloro-bridged iridium (III) dimers as OLED materials opening up new possibilities. Dalton Trans 44:8419

    Article  Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  • Wu PK, Ringeisen BR, Callahan J, Brooks M, Bubb DM, Wu HD, Piqué A, Spargo B, McGill RA, Chrisey DB (2001) The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398:607

    Article  ADS  Google Scholar 

  • Yamada H, Sano T, Nakayama T, Miyamoto I (2002) Optimization of laser-induced forward transfer process of metal thin films. Appl Surf Sci 197:411

    Article  ADS  Google Scholar 

  • Yoshioka Y, Calvert PD, Jabbour GE (2005) Simple modification of sheet resistivity of conducting polymeric anodes via combinatorial ink-jet printing techniques. Macromol Rapid Commun 26:238

    Article  Google Scholar 

  • Young D, Auyeung RCY, Piqué A, Chrisey DB, Dlott DD (2001) Time-resolved optical microscopy of a laser-based forward transfer process. Appl Phys Lett 78:3169

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the MOTIE [Ministry of Trade, Industry & Energy (10051438)] and KDRC (Korea Display Research Corporation) support program for the development of future device technology for the display industry. Also, we were supported by the MOTIE [Ministry of Trade, Industry & Energy (10079974)] of “Development of core technologies on materials, devices, and processes for TFT backplane and light emitting frontplane with enhanced stretchability above 20%, with application to stretchable display.” This work was also supported by Samsung Display. Prof. M. C. Suh is deeply grateful to Mr. Hyung Suk Kim for his helpful comments to find related works in this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chul Suh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suh, M.C. (2020). Laser Patterning Technologies. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_50-2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_50-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Laser Patterning Technologies
    Published:
    23 January 2020

    DOI: https://doi.org/10.1007/978-4-431-55761-6_50-2

  2. Original

    Laser Patterning Technologies
    Published:
    11 January 2020

    DOI: https://doi.org/10.1007/978-4-431-55761-6_50-1