Skip to main content

Solution Deposition: Inkjet-Printed OLED

  • Living reference work entry
  • First Online:
Handbook of Organic Light-Emitting Diodes

Abstract

Significant progress has been achieved in the area of full-color organic light-emitting diodes (OLEDs) in terms of their high performances for evaporated (RGB side-by-side patterning or multi-stack (tandem) high efficiency white technology for the large area TV). In case of printable material for RGB, it is still a valuable candidate as an alternative of evaporable emitter. However, despite intense efforts, the formation of uniform pattern RGB line in a large scale for commercial application, with sub-50-nm thin film of organic emitter pixels by inkjet printing, remains challenging. It requires an ink that complies with certain specifications and environment in terms of viscosity, surface tension, and vapor pressure. In this chapter, fundamentals of inkjet printing as well as specific technical issues such as ink formulation, jetting processes, development of printable materials, and uniform scale-up are briefly illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angelo PD (2013) Inkjet-printed light-emitting devices: applying inkjet microfabrication to multilayer electronics. PhD dissertation, University of Toronto

    Google Scholar 

  • Brown C (2015) OLED degradation, workshop presented at 18 August 2015, IMID, Taegu; Madigan C, Van Slyke S, Vronsky E, Inkjet printing equipment for organic LED mass production, SPIE Newsroom, 17 July 2015. https://doi.org/10.1117/2.1201506.005940

  • Chabinyc ML, Salleo A (2004) Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chem Mater 16:4509

    Article  Google Scholar 

  • Chabinyc ML, Wong WS, Arias C, Ready S, Lujan RA, Daniel JH, Krusor B, Apte RB, Salleo A, Street RA (2005) Printing methods and materials for large-area electronic devices. Proc IEEE 93:1491

    Article  Google Scholar 

  • Chen P-Y, Chen C-L, Chen C-C, Tsai L, Ting H-C, Lin L-F, Chen C-C, Chen C-Y, Chang L-H, Shih T-H, Chen Y-H, Huang J-C, Lai M-Y, Hsu C-M, Lin Y (2014) A 65-in. Ink-jet-printed OLED display panel with a high degree of pixel uniformity. SID Symp Dig Tech Pap 45:396

    Article  Google Scholar 

  • Chesterfield RJ, Frischknecht KD, Stainer M, Truong N, Murai M, Oze H, Shiota A, Suzuki S (2009) Multinozzle printing: a cost-effective process for OLED display fabrication. SID Symp Dig 40:951

    Article  Google Scholar 

  • Chesterfield RJ, Fennimore A, Hlaing H, Wyrsta IM, Merlo J, Radu N, Skulason H, Zoombelt A (2016) Solution printing for OLED televisions. SID Symp Dig 47:491

    Article  Google Scholar 

  • Cobas R, Muñoz-Pérez S, Cadogan S, Ridgway MC, Obradors X (2014) Surface charge reversal method for high-resolution inkjet printing of functional water-based inks. Adv Funct Mater 25:765

    Google Scholar 

  • de Gans B-J, Schubert US (2004) Inkjet printing of well-defined polymer dots and arrays. Langmuir 20:7789

    Article  Google Scholar 

  • de Gans B-J, Kazancioglu E, Meyer W, Schubert US (2004) Ink-jet printing polymers and polymer libraries using micropipettes. Macromol Rapid Commun 25:292

    Article  Google Scholar 

  • Dijksman JF, Duineveld PC, Hack MJJ, Pierik A, Rensen J, Rubingh J-E, Schram I, Vernhout MM (2007) Precision ink jet printing of polymer light emitting displays. J Mater Chem 17:511

    Article  Google Scholar 

  • Eral HB, Augustine DM, Duitsa MHG, Mugelea F (2011) Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting. Soft Matter 7:4954

    Article  ADS  Google Scholar 

  • Friederich A, Binder JR, Bauer W (2013) Rheological control of the coffee stain effect for inkjet printing of ceramics. J Am Ceram Soc 96:2093

    Article  Google Scholar 

  • Funamoto T, Matsueda Y, Yokoyama O, Tsuda A, Takeshita H, Miyashita S (2002) A 130-ppi, full-color polymer OLED display fabricated using an ink-jet process. SID Symp Dig Tech Pap 33:899

    Article  Google Scholar 

  • Gans B-J d, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203

    Article  Google Scholar 

  • Haskal EI, Buechel M, Dijksman JF, Duineveld PC, Meulenkamp EA, Mutsaers CAHA, Sempel A, Snijder P, Vulto SIE, van de Weijer P, de Winter SHPM (2002) Ink jet printing of passive-matrix polymer light emitting displays. SID Symp Dig Tech Pap 33:776

    Article  Google Scholar 

  • Hayer A, Anémian R, Eberle T, Heun S, Ludemann A, Schulte N, Buchholz H (2011) Concepts for solution-processable OLED materials at Merck. J Inf Disp 12:57

    Article  Google Scholar 

  • Hebner TR, Wu CC, Marcy D, Lu MH, Sturm JC (1998) Ink-jet printing of doped polymers for organic light emitting devices. Appl Phys Lett 72:519

    Article  ADS  Google Scholar 

  • Hong JY, Yoon DG, Chin BD (2015) Improvement of pattern quality and performance of inkjet-printed OLED. IMID Symp Dig Tech Pap 15:116

    Google Scholar 

  • Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090

    Article  Google Scholar 

  • Huang F, Cheng YJ, Zhang Y, Liu MS, Jen AKY (2008) Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. J Mater Chem 18:4495

    Article  Google Scholar 

  • Jungermann S, Riegel N, Müller D, Meerholz K, Nuyken O (2006) Novel photo-cross-linkable hole-transporting polymers: synthesis, characterization, and application in organic light emitting diodes. Macromolecules 39:8911

    Article  ADS  Google Scholar 

  • Kamiura N, Mametsuka K, Hanari J, Yamamoto K, Sakurai H, Hirayama H, Kobayashi M, Nakazono T (2001) Development of the active-matrix type 2.85-in. Q-C1F polymer-OLED display using Ink-Jet printing method. In: Proceedings of Asia display/IDW, Nagoya, p 1403

    Google Scholar 

  • Kim Y-H, Wolf C, Cho H, Jeong S-H, Lee T-W (2016) Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes. Adv Mater 28:734

    Article  Google Scholar 

  • Kipphan H (2001) Handbook of printed media. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Kobayashi H, Kanbe S, Seki S, Kigchi H, Kimura M, Yudasaka I, Miyashita S, Shimoda T, Towns CR, Burroughes JH, Friend RH (2000) A novel RGB multicolor light-emitting poymer display. Synth Met 111–112:125

    Article  Google Scholar 

  • Lee TW, Noh T, Shin HW, Kwon O, Park JJ, Choi BK, Kim MS, Shin DW, Kim YR (2009) Characteristics of solution-processed small-molecule organic films and light-emitting diodes compared with their vacuum-deposited counterparts. Adv Funct Mater 19:1625

    Article  Google Scholar 

  • Levermore P, Schenk T, Tseng H-R, Wang H-J, Heil H, Jatsch A, Buchholz H, Böhm E (2016) Ink-jet-printed OLEDs for display applications SID Symp. Dig 47:484

    Google Scholar 

  • Madigan CF, Hauf CR, Barkley LD, Harjee N, Vronsky E, Van Slyke SA (2014) Advancements in ink-jet printing for OLED mass production. SID Symp Dig Tech Pap 45:399

    Article  Google Scholar 

  • Ogawa I (2014) PLEDs, flexible displays and printed electronics. OLEDs World Summit. Berkeley, CA, USA

    Google Scholar 

  • Oh C-H, Shin H-J, Nam W-J, Ahn B-C, Cha S-Y, Yeo S-D (2013) Technological progress and commercialization of OLED TV. SID Symp Dig Tech Pap 44:239

    Article  Google Scholar 

  • Park J, Lee C, Jung J, Kang H, Kim KH, Ma B, Kim BJ (2014) Facile photo-crosslinking of azide-containing hole-transporting polymers for highly efficient, solution-processed, multilayer organic light emitting devices. Adv Funct Mater 24:7588

    Article  Google Scholar 

  • Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24:2224

    Article  Google Scholar 

  • Street RA, Wong WS, Ready SE, Chabinyc ML, Arias AC, Limb S, Salleo A, Lujan R (2006) Jet printing flexible displays. Mater Today 9:32

    Article  Google Scholar 

  • Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H (2004) Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3:171

    Article  ADS  Google Scholar 

  • Yook KS, Lee JY (2014) Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv Mater 26:4218

    Article  Google Scholar 

  • Yoon DG, Kim BS, Hong JY, Lee CW, Chin BD (2016) Interfaces and pattern resolution of inkjet-printed organic light-emitting diode with novel hole transport layer. IMID Symp Dig Tech Pap 16:62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Doo Chin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chin, B.D. (2019). Solution Deposition: Inkjet-Printed OLED. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics