Advertisement

Adenosine 3′-Phospho 5′-Phosphosulfate Transporter 1,2 (PAPST1,2) (SLC35B2,3)

  • Shoko Nishihara
Reference work entry

Abstract

Sulfation is one of the most important post-translational modifications of proteins and glycans as it generates sulfated molecules that are involved in a variety of biological processes. Sulfation is carried out in the lumen of the Golgi apparatus by a range of sulfotransferases. An activated form of sulfate, 3′-phosphoadenosine 5′-phosphosulfate (PAPS), is a common sulfate donor. Sulfotransferases transfer sulfate from PAPS to a defined position on a target sugar residue or Tyr residue. In higher organisms, PAPS is synthesized in the cytosol by a PAPS synthetase. PAPS transporters (PAPSTs), which are localized in the Golgi membrane, transport PAPS from the cytosol into the lumen of the Golgi apparatus by coupling with the antiport of adenosine 3′, 5′-diphosphate. Therefore, expression of PAPSTs determines the sulfation status of molecules on the cell surface and of secreted molecules.

To date, two PAPSTs, named PAPST1 and PAPST2, have been cloned and their activities identified. PAPST1 and PAPST2 are categorized as the second and third members of subgroup B of Solute carrier family 35 (SLC35B2 and SLC35B3, respectively). PAPST1 proteins have been identified from their PAPS transport activity in four mammalian species, the zebrafish and two invertebrate species, while PAPST2 proteins have been identified in two mammalian and two invertebrate species. Functional analyses of PAST1 and PAPST2 in model organisms and mammalian cells have shown that they have heparan sulfate-related or chondroitin sulfate-related activities. However, direct evidence linking defects in the activities of these transporter proteins to human disease has not been obtained to date.

Keywords

Bone Morphogenetic Protein Golgi Apparatus Heparan Sulfate Chondroitin Sulfate Zebra Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bhattacharya R, Townley RA, Berry KL, Bulow HE (2009) The PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in C. elegans. J Cell Sci 122:4492–4504PubMedCrossRefGoogle Scholar
  2. Clement A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB, Roehl HH (2008) Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 4:e1000136PubMedCentralPubMedCrossRefGoogle Scholar
  3. Dejima K, Murata D, Mizuguchi S, Nomura KH, Izumikawa T, Kitagawa H, Gengyo-Ando K, Yoshina S, Ichimiya T, Nishihara S, Mitani S, Nomura K (2010) Two Golgi-resident 3′-phosphoadenosine 5′-phosphosulfate transporters play distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans. J Biol Chem 285:24717–24728PubMedCrossRefGoogle Scholar
  4. Dick G, Grondahl F, Prydz K (2008) Overexpression of the 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporter 1 increases sulfation of chondroitin sulfate in the apical pathway of MDCK II cells. Glycobiology 18:53–65PubMedCrossRefGoogle Scholar
  5. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81:4493–4501PubMedCrossRefGoogle Scholar
  6. Goda E, Kamiyama S, Uno T, Yoshida H, Ueyama M, Kinoshita-Toyoda A, Toyoda H, Ueda R, Nishihara S (2006) Identification and characterization of a novel Drosophila 3′-phosphoadenosine 5′-phosphosulfate transporter. J Biol Chem 281:28508–28517PubMedCrossRefGoogle Scholar
  7. Ikeda T, Mabuchi A, Fukuda A, Hiraoka H, Kawakami A, Yamamoto S, Machida H, Takatori Y, Kawaguchi H, Nakamura K, Ikegawa S (2001) Identification of sequence polymorphisms in two sulfation-related genes, PAPSS2 and SLC26A2, and an association analysis with knee osteoarthritis. J Hum Genet 46:538–543PubMedCrossRefGoogle Scholar
  8. Kamiyama S, Suda T, Ueda R, Suzuki M, Okubo R, Kikuchi N, Chiba Y, Goto S, Toyoda H, Saigo K, Watanabe M, Narimatsu H, Jigami Y, Nishihara S (2003) Molecular cloning and identification of 3′-phosphoadenosine 5′-phosphosulfate transporter. J Biol Chem 278:25958–25963PubMedCrossRefGoogle Scholar
  9. Kamiyama S, Nishihara S (2004) The subcellular PAPS synthesis pathway responsible for the sulfation of proteoglycans: a comparison between human and Drosophila melanogaster. TIGG 16:109–123CrossRefGoogle Scholar
  10. Kamiyama S, Sasaki N, Goda E, Ui-Tei K, Saigo K, Narimatsu H, Jigami Y, Kannagi R, Irimura T, Nishihara S (2006) Molecular cloning and characterization of a novel 3′-phosphoadenosine 5′-phosphosulfate transporter, PAPST2. J Biol Chem 281:10945–10953PubMedCrossRefGoogle Scholar
  11. Kamiyama S, Ichimiya T, Ikehara Y, Takase T, Fujimoto I, Suda T, Nakamori S, Nakamura M, Nakayama F, Irimura T, Nakanishi H, Watanabe M, Narimatsu H, Nishihara S (2011) Expression and the role of 3′-phosphoadenosine 5′-phosphosulfate transporters in human colorectal carcinoma. Glycobiology 21:235–246PubMedCrossRefGoogle Scholar
  12. Kolset SO, Prydz K, Pejler G (2004) Intracellular proteoglycans. Biochem J 379:217–227PubMedCrossRefGoogle Scholar
  13. Leppanen A, White SP, Helin J, McEver RP, Cummings RD (2000) Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J Biol Chem 275:39569–19578PubMedCrossRefGoogle Scholar
  14. Li H, Deyrup A, Mensch JR Jr, Domowicz M, Konstantinidis AK, Schwartz NB (1995) The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase-adenosine 5′-phosphosulfate kinase. J Biol Chem 270:29453–29459PubMedCrossRefGoogle Scholar
  15. Luders F, Segawa H, Stein D, Selva EM, Perrimon N, Turco SJ, Hacker U (2003) Slalom encodes an adenosine 3′-phosphate 5′-phosphosulfate transporter essential for development in Drosophila. EMBO J 22:3635–3644PubMedCrossRefGoogle Scholar
  16. Mandon EC, Milla ME, Kempner E, Hirschberg CB (1994) Purification of the Golgi adenosine 3′-phosphate 5′-phosphosulfate transporter, a homodimer within the membrane. Proc Natl Acad Sci USA 91:10707–10711PubMedCentralPubMedCrossRefGoogle Scholar
  17. Milla ME, Hirschberg CB (1989) Reconstitution of Golgi vesicle CMP-sialic acid and adenosine 3′-phosphate 5′-phosphosulfate transport into proteoliposomes. Proc Natl Acad Sci USA 86:1786–1990PubMedCentralPubMedCrossRefGoogle Scholar
  18. Mitoma J, Bao X, Petryanik B, Schaerli P, Gauguet JM, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Khoo KH, von Andrian UH, Lowe JB, Fukuda M (2007) Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol 8:409–418PubMedCrossRefGoogle Scholar
  19. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648PubMedCrossRefGoogle Scholar
  20. Ozeran JD, Westley J, Schwartz NB (1996a) Kinetics of PAPS translocase: evidence for an antiport mechanism. Biochemistry 35:3685–3694PubMedCrossRefGoogle Scholar
  21. Ozeran JD, Westley J, Schwartz NB (1996b) Identification and partial purification of PAPS translocase. Biochemistry 35:3695–3703PubMedCrossRefGoogle Scholar
  22. Robbins PW, Lipmann F (1957) Isolation and identification of active sulfate. J Biol Chem 229:837–851PubMedGoogle Scholar
  23. Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y, Nishihara S (2009) The 3′-phosphoadenosine 5′-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS One 4:e8262PubMedCentralPubMedCrossRefGoogle Scholar
  24. Schwarz JK, Capasso JM, Hirschberg CB (1984) Translocation of adenosine 3′-phosphate 5′-phosphosulfate into rat liver Golgi vesicles. J Biol Chem 259:3554–3559PubMedGoogle Scholar
  25. Shimazu D, Yamamoto N, Umino A, Ishii S, Sakurai S, Nishikawa T (2006) Inhibition of D-serine accumulation in the Xenopus oocyte by expression of the rat ortholog of human 3′-phosphoadenosine 5′-phosphosulfate transporter gene isolated from the neocortex as D-serine modulator-1. J Neurochem 96:30–42PubMedCrossRefGoogle Scholar
  26. Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103:467–479PubMedCrossRefGoogle Scholar
  27. Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82PubMedCrossRefGoogle Scholar
  28. Wiweger MI, Avramut CM, de Andrea CE, Prins FA, Koster AJ, Ravelli RB, Hogendoorn PC (2011) Cartilage ultrastructure in proteoglycan-deficient zebrafish mutants brings to light new candidate genes for human skeletal disorders. J Pathol 223:531–542PubMedCrossRefGoogle Scholar
  29. Wiweger MI, Zhao Z, van Merkesteyn RJ, Roehl HH, Hogendoorn PC (2012) HSPG-deficient zebrafish uncovers dental aspect of multiple osteochondromas. PLoS One 7:e29734PubMedCentralPubMedCrossRefGoogle Scholar
  30. Yamamoto-Hino M, Abe M, Shibano T, Setoguchi Y, Awano W, Ueda R, Okano H, Goto S (2012) Cisterna-specific localization of glycosylation-related proteins to the Golgi apparatus. Cell Struct Funct 37:55–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Bioinformatics, Faculty of EngineeringSoka UniversityHachiojiJapan

Personalised recommendations