UDP-GlcNAc: BetaGal Beta-1,3-N-Acetylglucosaminyltransferase 5 (B3GNT5, Lc3Cer Synthase)

  • Akira Togayachi
  • Hisashi Narimatsu
Reference work entry


β1,3-N-acetylglucosaminyltransferases (β3GnTs) synthesize a unique carbohydrate structure known as polylactosamine (poly-N-acetyllactosamine). Polylactosamines are carried on N- and O-glycans and glycolipids. The polylactosamine unit is considered an integral component that serves as a fundamental structure and backbone for carbohydrates.


Acceptor Substrate Namalwa Cell Glycosyltransferase Activity Putative Catalytic Domain B3GNT5 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashwell KW, Mai JK (1997) A transient CD15 immunoreactive sling in the developing mouse cerebellum. Int J Dev Neurosci 15:883–889PubMedCrossRefGoogle Scholar
  2. Biellmann F, Hulsmeier AJ, Zhou D, Cinelli P, Hennet T (2008) The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC Dev Biol 8:109PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chou DK, Jungalwala FB (1993a) Characterization and developmental expression of a novel sulfotransferase for the biosynthesis of sulfoglucuronyl glycolipids in the nervous system. J Biol Chem 268:330–336PubMedGoogle Scholar
  4. Chou DK, Jungalwala FB (1993b) N-acetylglucosaminyltransferase regulates the expression of neolactoglycolipids including sulfoglucuronylglycolipids in the developing nervous system. J Biol Chem 268:21727–21733PubMedGoogle Scholar
  5. Chou DK, Flores S, Jungalwala FB (1991) Expression and regulation of UDP-glucuronate: neolactotetraosylceramide glucuronyltransferase in the nervous system. J Biol Chem 266:17941–17947PubMedGoogle Scholar
  6. Chou DK, Henion TR, Jungalwala FB (2003) Regulation of expression of sulfoglucuronyl carbohydrate (HNK-1), Amphoterin and RAGE in retinoic acid-differentiated P19 embryonal carcinoma cells. J Neurochem 86:917–931PubMedCrossRefGoogle Scholar
  7. Etcheverry A, Aubry M, de Tayrac M, Vauleon E, Boniface R, Guenot F, Saikali S, Hamlat A, Riffaud L, Menei P, Quillien V, Mosser J (2010) DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics 11:701PubMedCentralPubMedCrossRefGoogle Scholar
  8. Gocht A, Struckhoff G, Lhler J (1996) CD15-Containing glycoconjugates in the central nervous system. Histol Histopathol 11:1007–1028PubMedGoogle Scholar
  9. Henion TR, Zhou D, Wolfer DP, Jungalwala FB, Hennet T (2001) Cloning of a mouse beta 1,3 N-acetylglucosaminyltransferase GlcNAc(beta 1,3)Gal(beta 1,4)Glc-ceramide synthase gene encoding the key regulator of lacto-series glycolipid biosynthesis. J Biol Chem 276:30261–30269PubMedCrossRefGoogle Scholar
  10. Hennet T, Dinter A, Kuhnert P, Mattu TS, Rudd PM, Berger EG (1998) Genomic cloning and expression of three murine UDP-galactose: beta-N-acetylglucosamine beta1,3-galactosyltransferase genes. J Biol Chem 273:58–65PubMedCrossRefGoogle Scholar
  11. Holmes EH, Hakomori S, Ostrander GK (1987) Synthesis of type 1 and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed beta 1–3N-acetylglucosaminyltransferase. J Biol Chem 262:15649–15658PubMedGoogle Scholar
  12. Hu J, Stults CL, Holmes EH, Macher BA (1994) Structural characterization of intermediates in the biosynthetic pathway of neolacto glycosphingolipids: differential expression in human leukaemia cells. Glycobiology 4:251–257PubMedCrossRefGoogle Scholar
  13. Jungalwala FB (1994) Expression and biological functions of sulfoglucuronyl glycolipids (SGGLs) in the nervous system – a review. Neurochem Res 19:945–957PubMedCrossRefGoogle Scholar
  14. Kuan CT, Chang J, Mansson JE, Li J, Pegram C, Fredman P, McLendon RE, Bigner DD (2010) Multiple phenotypic changes in mice after knockout of the B3gnt5 gene, encoding Lc3 synthase – a key enzyme in lacto-neolacto ganglioside synthesis. BMC Dev Biol 10:114PubMedCentralPubMedCrossRefGoogle Scholar
  15. Mai JK, Krajewski S, Reifenberger G, Genderski B, Lensing-Hohn S, Ashwell KW (1999) Spatiotemporal expression gradients of the carbohydrate antigen (CD15) (Lewis X) during development of the human basal ganglia. Neuroscience 88:847–858PubMedCrossRefGoogle Scholar
  16. Parks JC, McCallie BR, Janesch AM, Schoolcraft WB, Katz-Jaffe MG (2011) Blastocyst gene expression correlates with implantation potential. Fertil Steril 95:1367–1372PubMedCrossRefGoogle Scholar
  17. Schwarting GA (1980) Quantitative analysis of neutral glycosphingolipids from human lymphocyte subpopulations. Biochem J 189:407–412PubMedGoogle Scholar
  18. Shiraishi N, Natsume A, Togayachi A, Endo T, Akashima T, Yamada Y, Imai N, Nakagawa S, Koizumi S, Sekine S, Narimatsu H, Sasaki K (2001) Identification and characterization of three novel β 1,3-N-acetylglucosaminyltransferases structurally related to the β 1,3-galactosyltransferase family. J Biol Chem 276:3498–3507PubMedCrossRefGoogle Scholar
  19. Streit A, Yuen CT, Loveless RW, Lawson AM, Finne J, Schmitz B, Feizi T, Stern CD (1996) The Le(x) carbohydrate sequence is recognized by antibody to L5, a functional antigen in early neural development. J Neurochem 66:834–844PubMedCrossRefGoogle Scholar
  20. Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, Natsume A, Mio H, Inokuchi J, Irimura T, Sasaki K, Narimatsu H (2001) Molecular cloning and characterization of UDP-GlcNAc:Lactosylceramide β 1,3-N-acetylglucosaminyltransferase (β 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem 276:22032–22040PubMedCrossRefGoogle Scholar
  21. Togayachi A, Sato T, Narimatsu H (2006) Comprehensive enzymatic characterization of glycosyltransferases with a β3GT or β4GT motif. Methods Enzymol 416:91–102PubMedCrossRefGoogle Scholar
  22. Togayachi A, Kozono Y, Ikehara Y, Ito H, Suzuki N, Tsunoda Y, Abe S, Sato T, Nakamura K, Suzuki M, Goda HM, Ito M, Kudo T, Takahashi S, Narimatsu H (2010) Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation. Proc Natl Acad Sci USA 107:11900–11905PubMedCentralPubMedCrossRefGoogle Scholar
  23. Yohe HC, Coleman DL, Ryan JL (1985) Ganglioside alterations in stimulated murine macrophages. Biochim Biophys Acta 818:81–86PubMedCrossRefGoogle Scholar
  24. Zhou D, Dinter A, Gutierrez Gallego R, Kamerling JP, Vliegenthart JF, Berger EG, Hennet T (1999) A beta-1,3-N-acetylglucosaminyltransferase with poly-N-acetyllactosamine synthase activity is structurally related to beta-1,3-galactosyltransferases. Proc Natl Acad Sci USA 96:406–411PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations