Advertisement

OST Complex (OST48, Ribophorin I, Ribophorin II, DAD1)

  • Yoichiro Harada
  • Tadashi Suzuki
Reference work entry

Abstract

Protein N-glycosylation is now found in all three domains of life (Kelleher and Gilmore 2006; Schwarz and Aebi 2011). The common features of this protein modification throughout the evolution are the preassembly of the N-glycan precursors on the lipid carriers (dolichol, Dol for eukaryote and archaea, undecaprenol for bacteria) and its transfer to nascent polypeptides. In Saccharomyces cerevisiae and mammals, the preassembly of the glycan begins with the synthesis of the Man5GlcNAc2-PP-Dol (PP stands for pyrophosphate) intermediate on the cytosolic side of the endoplasmic reticulum (ER) membrane, which is then flipped into the ER lumen to be matured to the fully assembled Glc3Man9GlcNAc2-PP-Dol. The oligosaccharide moiety is transferred en bloc to the side chain of asparagine residue within the N-glycosylation consensus sequences (N-X-S/T, X ≠ P) of nascent polypeptides in the ER lumen. The N-glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), the multi-membrane protein complex associated with the ER membrane. The catalytic center of OST resides in the Stt3 proteins that are conserved throughout evolution. In mammals and S. cerevisiae, the Stt3 proteins need to form a complex for the maximum activity with the accessory membrane proteins (DDOST/OST48, RPN1/ribophorin I, RPN2/ribophorin II, DAD1, Ost4, TUSC3/N33, and MGAT1/IAP in mammals; Wbp1, Swp1, Ost1, Ost2, Ost4, Ost5, and either Ost3 or its paralog Ost6 in S. cerevisiae). On the other hand, some pathogenic bacteria and protists contain only Stt3 orthologs.

Keywords

Endoplasmic Reticulum Membrane Endoplasmic Reticulum Lumen Nascent Polypeptide Glycosyl Donor Endoplasmic Reticulum Retention Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aebi M, Bernasconi R, Clerc S et al (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82PubMedCrossRefGoogle Scholar
  2. Albright CF, Orlean P, Robbins PW (1989) A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci USA 86:7366–7369PubMedCrossRefGoogle Scholar
  3. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8PubMedCrossRefGoogle Scholar
  4. Bause E, Legler G (1981) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195:639–644PubMedGoogle Scholar
  5. Bause E, Hettkamp H, Legler G (1982) Conformational aspects of N-glycosylation of proteins. Studies with linear and cyclic peptides as probes. Biochem J 203:761–768PubMedGoogle Scholar
  6. Beatson S, Ponting CP (2004) GIFT domains: linking eukaryotic intraflagellar transport and glycosylation to bacterial gliding. Trends Biochem Sci 29:396–399PubMedCrossRefGoogle Scholar
  7. Becker T, Bhushan S, Jarasch A et al (2009) Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326:1369–1373PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ben-Dor S, Esterman N, Rubin E et al (2004) Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology 14:95–101PubMedCrossRefGoogle Scholar
  9. Breuer W, Bause E (1995) Oligosaccharyl transferase is a constitutive component of an oligomeric protein complex from pig liver endoplasmic reticulum. Eur J Biochem 228:689–696PubMedCrossRefGoogle Scholar
  10. Chalifour RJ, Spiro RG (1988) Effect of phospholipids on thyroid oligosaccharyltransferase activity and orientation. Evaluation of structural determinants for stimulation of N-glycosylation. J Biol Chem 263:15673–15680PubMedGoogle Scholar
  11. Chavan M, Yan A, Lennarz WJ (2005) Subunits of the translocon interact with components of the oligosaccharyl transferase complex. J Biol Chem 280:22917–22924PubMedCrossRefGoogle Scholar
  12. Chavan M, Chen Z, Li G et al (2006) Dimeric organization of the yeast oligosaccharyl transferase complex. Proc Natl Acad Sci USA 103:8947–8952PubMedCrossRefGoogle Scholar
  13. Chi JH, Roos J, Dean N (1996) The OST4 gene of Saccharomyces cerevisiae encodes an unusually small protein required for normal levels of oligosaccharyltransferase activity. J Biol Chem 271:3132–3140PubMedCrossRefGoogle Scholar
  14. Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1631PubMedCrossRefGoogle Scholar
  15. Crimaudo C, Hortsch M, Gausepohl H et al (1987) Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins. EMBO J 6:75–82PubMedGoogle Scholar
  16. Datta AK, Lehrman MA (1993) Both potential dolichol recognition sequences of hamster GlcNAc-1-phosphate transferase are necessary for normal enzyme function. J Biol Chem 268:12663–12668PubMedGoogle Scholar
  17. Franc JL, Bouchilloux S (1984) Phosphatidylcholine requirement for the N-glycosylation of synthetic peptides by detergent-solubilized oligosaccharyltransferase. Biochim Biophys Acta 800:166–170PubMedCrossRefGoogle Scholar
  18. Fu J, Kreibich G (2000) Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum. J Biol Chem 275:3984–3990PubMedCrossRefGoogle Scholar
  19. Fu J, Ren M, Kreibich G (1997) Interactions among subunits of the oligosaccharyltransferase complex. J Biol Chem 272:29687–29692PubMedCrossRefGoogle Scholar
  20. Fu J, Pirozzi G, Sanjay A et al (2000) Localization of ribophorin II to the endoplasmic reticulum involves both its transmembrane and cytoplasmic domains. Eur J Cell Biol 79:219–228PubMedCrossRefGoogle Scholar
  21. Gavel Y, von Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng 3:433–442PubMedCrossRefGoogle Scholar
  22. Gaynor EC, te Heesen S, Graham TR et al (1994) Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J Cell Biol 127:653–665PubMedCrossRefGoogle Scholar
  23. Harada Y, Li H, Li H et al (2009) Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site. Proc Natl Acad Sci USA 106:6945–6949PubMedCrossRefGoogle Scholar
  24. Hardt B, Aparicio R, Bause E (2000) The oligosaccharyltransferase complex from pig liver: cDNA cloning, expression and functional characterisation. Glycoconj J 17:767–779PubMedCrossRefGoogle Scholar
  25. Harnik-Ort V, Prakash K, Marcantonio E et al (1987) Isolation and characterization of cDNA clones for rat ribophorin I: complete coding sequence and in vitro synthesis and insertion of the encoded product into endoplasmic reticulum membranes. J Cell Biol 104:855–863PubMedCrossRefGoogle Scholar
  26. Hart GW, Brew K, Grant GA et al (1979) Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J Biol Chem 254:9747–9753PubMedGoogle Scholar
  27. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369PubMedCrossRefGoogle Scholar
  28. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049PubMedCrossRefGoogle Scholar
  29. Hendrickson TL, Imperiali B (1995) Metal ion dependence of oligosaccharyl transferase: implications for catalysis. Biochemistry 34:9444–9450PubMedCrossRefGoogle Scholar
  30. Hese K, Otto C, Routier FH et al (2009) The yeast oligosaccharyltransferase complex can be replaced by STT3 from Leishmania major. Glycobiology 19:160–171PubMedCrossRefGoogle Scholar
  31. Igura M, Maita N, Kamishikiryo J et al (2008) Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 27:234–243PubMedCrossRefGoogle Scholar
  32. Imperiali B, Shannon KL, Rickert KW (1992) Role of peptide conformation in asparagine-linked glycosylation. J Am Chem Soc 114:7942–7944CrossRefGoogle Scholar
  33. Jones MA, Ng BG, Bhide S et al (2012) DDOST mutations identified by whole-exome sequencing are implicated in congenital disorders of glycosylation. Am J Hum Genet 90:363–368PubMedCentralPubMedCrossRefGoogle Scholar
  34. Karaoglu D, Kelleher DJ, Gilmore R (1995) Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J Cell Biol 130:567–577PubMedCrossRefGoogle Scholar
  35. Karaoglu D, Kelleher DJ, Gilmore R (1997) The highly conserved Stt3 protein is a subunit of the yeast oligosaccharyltransferase and forms a subcomplex with Ost3p and Ost4p. J Biol Chem 272:32513–32520PubMedCrossRefGoogle Scholar
  36. Katz FN, Rothman JE, Lingappa VR et al (1977) Membrane assembly in vitro: synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proc Natl Acad Sci USA 74:3278–3282PubMedCrossRefGoogle Scholar
  37. Kelleher DJ, Gilmore R (1994) The saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbp1p, Swp1p, and four additional polypeptides. J Biol Chem 269:12908–12917PubMedGoogle Scholar
  38. Kelleher DJ, Gilmore R (1997) DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci USA 94:4994–4999PubMedCrossRefGoogle Scholar
  39. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62RPubMedCrossRefGoogle Scholar
  40. Kelleher DJ, Kreibich G, Gilmore R (1992) Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69:55–65PubMedCrossRefGoogle Scholar
  41. Kelleher DJ, Karaoglu D, Gilmore R (2001) Large-scale isolation of dolichol-linked oligosaccharides with homogeneous oligosaccharide structures: determination of steady-state dolichol-linked oligosaccharide compositions. Glycobiology 11:321–333PubMedCrossRefGoogle Scholar
  42. Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R (2003) Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol Cell 12:101–111PubMedCrossRefGoogle Scholar
  43. Kim H, Yan Q, Von Heijne G et al (2003) Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:7460–7464PubMedCrossRefGoogle Scholar
  44. Kim H, von Heijne G, Nilsson I (2005) Membrane topology of the STT3 subunit of the oligosaccharyl transferase complex. J Biol Chem 280:20261–20267PubMedCrossRefGoogle Scholar
  45. Knauer R, Lehle L (1999) The oligosaccharyltransferase complex from saccharomyces cerevisiae. Isolation of the OST6 gene, its synthetic interaction with OST3, and analysis of the native complex. J Biol Chem 274:17249–17256PubMedCrossRefGoogle Scholar
  46. Kohda D, Yamada M, Igura M et al (2007) New oligosaccharyltransferase assay method. Glycobiology 17:1175–1182PubMedCrossRefGoogle Scholar
  47. Kowarik M, Numao S, Feldman MF et al (2006) N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314:1148–1150PubMedCrossRefGoogle Scholar
  48. Kreibich G, Ulrich BL, Sabatini DD (1978a) Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J Cell Biol 77:464–487PubMedCrossRefGoogle Scholar
  49. Kreibich G, Freienstein CM, Pereyra BN et al (1978b) Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites. J Cell Biol 77:488–506PubMedCrossRefGoogle Scholar
  50. Kumar V, Heinemann FS, Ozols J (1994a) Microassay for oligosaccharyltransferase: separation of reaction components by partitioning in detergent solution followed by ultrafiltration. Anal Biochem 219:305–308PubMedCrossRefGoogle Scholar
  51. Kumar V, Heinemann FS, Ozols J (1994b) Purification and characterization of avian oligosaccharyltransferase. Complete amino acid sequence of the 50-kDa subunit. J Biol Chem 269:13451–13457PubMedGoogle Scholar
  52. Kumar V, Korza G, Heinemann FS et al (1995) Human oligosaccharyltransferase: isolation, characterization, and the complete amino acid sequence of 50-kDa subunit. Arch Biochem Biophys 320:217–223PubMedCrossRefGoogle Scholar
  53. Lairson LL, Henrissat B, Davies GJ et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555PubMedCrossRefGoogle Scholar
  54. Lehle L, Bause E (1984) Primary structural requirements for N- and O-glycosylation of yeast mannoproteins. Biochim Biophys Acta 799:246–251CrossRefGoogle Scholar
  55. Lennarz WJ (2007) Studies on oligosaccharyl transferase in yeast. Acta Biochim Pol 54:673–677PubMedGoogle Scholar
  56. Li G, Yan Q, Nita-Lazar A et al (2005) Studies on the N-glycosylation of the subunits of oligosaccharyl transferase in saccharomyces cerevisiae. J Biol Chem 280:1864–1871PubMedCrossRefGoogle Scholar
  57. Lingappa VR, Lingappa JR, Prasad R et al (1978) Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein. Proc Natl Acad Sci USA 75:2338–2342PubMedCrossRefGoogle Scholar
  58. Lizak C, Gerber S, Numao S et al (2011) X-ray structure of a bacterial oligosaccharyltransferase. Nature 474:350–355PubMedCrossRefGoogle Scholar
  59. MacGrogan D, Levy A, Bova GS et al (1996) Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics 35:55–65PubMedCrossRefGoogle Scholar
  60. Maita N, Nyirenda J, Igura M et al (2010) Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J Biol Chem 285:4941–4950PubMedCrossRefGoogle Scholar
  61. Makishima T, Nakashima T, Nagata-Kuno K et al (1997) The highly conserved DAD1 protein involved in apoptosis is required for N-linked glycosylation. Genes Cells 2:129–141PubMedCrossRefGoogle Scholar
  62. Molinari F, Foulquier F, Tarpey PS et al (2008) Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet 82:1150–1157PubMedCentralPubMedCrossRefGoogle Scholar
  63. Nakashima T, Sekiguchi T, Kuraoka A et al (1993) Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol 13:6367–6374PubMedCentralPubMedGoogle Scholar
  64. Nasab FP, Schulz BL, Gamarro F et al (2008) All in one: leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in saccharomyces cerevisiae. Mol Biol Cell 19:3758–3768PubMedCentralPubMedCrossRefGoogle Scholar
  65. Nilsson IM, von Heijne G (1993) Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem 268:5798–5801PubMedGoogle Scholar
  66. Reiss G, te Heesen S, Gilmore R et al (1997) A specific screen for oligosaccharyltransferase mutations identifies the 9 kDa OST5 protein required for optimal activity in vivo and in vitro. EMBO J 16:1164–1172PubMedCrossRefGoogle Scholar
  67. Revers L, Wilson IB, Webberley MC et al (1994) The potential dolichol recognition sequence of beta-1,4-mannosyltransferase is not required for enzymic activity using phytanyl-pyrophosphoryl-alpha-N, N’- diacetylchitobioside as acceptor. Biochem J 299:23–27PubMedGoogle Scholar
  68. Ruiz-Canada C, Kelleher DJ, Gilmore R (2009) Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136:272–283PubMedCentralPubMedCrossRefGoogle Scholar
  69. Samuelson J, Banerjee S, Magnelli P et al (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA 102:1548–1553PubMedCrossRefGoogle Scholar
  70. Sanjay A, Fu J, Kreibich G (1998) DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex. J Biol Chem 273:26094–26099PubMedCrossRefGoogle Scholar
  71. Sato T, Sako Y, Sho M et al (2012) STT3B-dependent posttranslational N-glycosylation as a surveillance system for secretory protein. Mol Cell 47:99–110PubMedGoogle Scholar
  72. Schulz BL, Aebi M (2009) Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol Cell Proteomics 8:357–364PubMedCrossRefGoogle Scholar
  73. Schulz BL, Stirnimann CU, Grimshaw JP et al (2009) Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc Natl Acad Sci USA 106:11061–11066PubMedCrossRefGoogle Scholar
  74. Schutzbach JS (1994) Is there a “dolichol recognition sequence” in enzymes that interact with dolichols and other polyisoprenoid substrates? Acta Biochim Pol 41:269–274PubMedGoogle Scholar
  75. Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582PubMedCrossRefGoogle Scholar
  76. Schwarz M, Knauer R, Lehle L (2005) Yeast oligosaccharyltransferase consists of two functionally distinct sub-complexes, specified by either the Ost3p or Ost6p subunit. FEBS Lett 579:6564–6568PubMedCrossRefGoogle Scholar
  77. Shibatani T, David LL, McCormack AL et al (2005) Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44:5982–5992PubMedCrossRefGoogle Scholar
  78. Silberstein S, Kelleher DJ, Gilmore R (1992) The 48-kDa subunit of the mammalian oligosaccharyltransferase complex is homologous to the essential yeast protein WBP1. J Biol Chem 267:23658–23663PubMedGoogle Scholar
  79. Silberstein S, Collins PG, Kelleher DJ et al (1995a) The alpha subunit of the Saccharomyces cerevisiae oligosaccharyltransferase complex is essential for vegetative growth of yeast and is homologous to mammalian ribophorin I. J Cell Biol 128:525–536PubMedCrossRefGoogle Scholar
  80. Silberstein S, Collins PG, Kelleher DJ et al (1995b) The essential OST2 gene encodes the 16-kD subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms. J Cell Biol 131:371–383PubMedCrossRefGoogle Scholar
  81. Spirig U, Glavas M, Bodmer D et al (1997) The STT3 protein is a component of the yeast oligosaccharyltransferase complex. Mol Gen Genet 256:628–637PubMedCrossRefGoogle Scholar
  82. Spirig U, Bodmer D, Wacker M et al (2005) The 3.4-kDa ost4 protein is required for the assembly of two distinct oligosaccharyltransferase complexes in yeast. Glycobiology 15:1396–1406PubMedCrossRefGoogle Scholar
  83. Szymanski CM, Yao R, Ewing CP et al (1999) Evidence for a system of general protein glycosylation in campylobacter jejuni. Mol Microbiol 32:1022–1030PubMedCrossRefGoogle Scholar
  84. te Heesen S, Rauhut R, Aebersold R et al (1991) An essential 45 kDa yeast transmembrane protein reacts with anti-nuclear pore antibodies: purification of the protein, immunolocalization and cloning of the gene. Eur J Cell Biol 56:8–18Google Scholar
  85. te Heesen S, Janetzky B, Lehle L et al (1992) The yeast WBP1 is essential for oligosaccharyl transferase activity in vivo and in vitro. EMBO J 11:2071–2075Google Scholar
  86. te Heesen S, Knauer R, Lehle L et al (1993) Yeast Wbp1p and Swp1p form a protein complex essential for oligosaccharyl transferase activity. EMBO J 12:279–284Google Scholar
  87. Wacker M, Linton D, Hitchen PG et al (2002) N-linked glycosylation in campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793PubMedCrossRefGoogle Scholar
  88. Welply JK, Shenbagamurthi P, Lennarz WJ et al (1983) Substrate recognition by oligosaccharyltransferase. Studies on glycosylation of modified Asn-X-Thr/Ser tripeptides. J Biol Chem 258:11856–11863PubMedGoogle Scholar
  89. Yan A, Lennarz WJ (2005) Two oligosaccharyl transferase complexes exist in yeast and associate with two different translocons. Glycobiology 15:1407–1415PubMedCrossRefGoogle Scholar
  90. Yoshida S, Ohya Y, Nakano A et al (1995) STT3, a novel essential gene related to the PKC1/STT1 protein kinase pathway, is involved in protein glycosylation in yeast. Gene 164:167–172PubMedCrossRefGoogle Scholar
  91. Zielinska DF, Gnad F, Wiśniewski JR et al (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907PubMedCrossRefGoogle Scholar
  92. Zubkov S, Lennarz WJ, Mohanty S (2004) Structural basis for the function of a minimembrane protein subunit of yeast oligosaccharyltransferase. Proc Natl Acad Sci USA 101:3821–3826PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Glycometabolome Team, Systems Glycobiology Research GroupRIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKENWakoJapan

Personalised recommendations