Advertisement

Alpha-1,4-N-Acetylglucosaminyltransferase (A4GNT)

  • Jun Nakayama
Reference work entry

Abstract

α1,4-N-acetylglucosaminyltransferase (α4GnT) is a glycosyltransferase that mediates transfer of GlcNAc from UDP-GlcNAc to βGal residues with α1,4-linkage preferentially present in O-glycans forming GlcNAcα1→4Galβ→R, and cDNA encoding α4GnT was isolated from a human stomach cDNA library by expression cloning. In normal human tissues, O-glycans exhibiting GlcNAcα1→4Galβ→R at nonreducing terminal (αGlcNAc) are exclusively limited to gland mucin secreted from gland mucous cells of the stomach and Brunner’s gland of the duodenum. αGlcNAc in gland mucin is detected by immunohistochemistry with HIK1083 antibody and paradoxical ConA staining. Notably, αGlcNAc inhibits the growth and motility of Helicobacter pylori (H. pylori) by inhibiting the biosynthesis of its cell wall component cholesteryl-α-D-glucopyranoside. In addition, A4gnt-/- mice show no αGlcNAc in gland mucin in the gastroduodenal mucosa, and develop gastric differentiated-type adenocarcinoma through inflammation-associated pathways, even in the absence of H. pylori infection. Thus, αGlcNAc in gland mucin plays a dual role in protecting gland mucous cells from H. pylori infection and also serving as a tumor suppressor of differentiated-type gastric adenocarcinoma.

Keywords

Pylorus Infection Gastric Mucin Mucous Neck Cell Gastroduodenal Mucosa Nonreducing Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Fukuda M, Tsuboi S (1999) Mucin-type O-glycans and leukosialin. Biochim Biophys Acta 1455:205–217PubMedCrossRefGoogle Scholar
  2. Hirai Y, Haque M, Yoshida T, Yokota K, Yasuda T, Oguma K (1995) Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol 177:5327–5333PubMedCentralPubMedGoogle Scholar
  3. Hoshino H, Tsuchida A, Kametani K, Mori M, Nishizawa T, Suzuki T, Nakamura H, Lee H, Ito Y, Kobayashi M, Masumoto J, Fujita M, Fukuda M, Nakayama J (2011) Membrane-associated activation of cholesterol α-glucosyltransferase, an enzyme responsible for biosynthesis of cholesteryl-α-D-glucopyranoside in Helicobacter pylori critical for its survival. J Histochem Cytochem 59:98–105PubMedCrossRefGoogle Scholar
  4. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Klöppel G, Longnecker DS, Lüttges J, Offerhaus GJ (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586PubMedCrossRefGoogle Scholar
  5. Ishihara K, Kurihara M, Goso Y, Urata T, Ota H, Katsuyama T, Hotta K (1996) Peripheral α-linked N-acetylglucosamine on the carbohydrate moiety of mucin derived from mammalian gastric mucous cells: epitope recognized by a newly characterized monoclonal antibody. Biochem J 318:409–416PubMedGoogle Scholar
  6. Ishizone S, Yamauchi K, Kawa S, Shimizu F, Harada O, Sugiyama A, Miyagawa S, Fukuda M, Nakayama J (2006) Clinical utility of quantitative RT-PCR targeted to α1,4-N-acetylglucosaminyltransferase mRNA for detection of pancreatic cancer. Cancer Sci 97:119–126PubMedCrossRefGoogle Scholar
  7. Karasawa F, Shiota A, Goso Y, Kobayashi M, Sato Y, Masumoto J, Fujiwara M, Yokosawa S, Muraki T, Miyagawa S, Ueda M, Fukuda MN, Fukuda M, Ishihara K, Nakayama J (2012) Essential role of gastric gland mucin in preventing gastric cancer in mice. J Clin Invest 122:923–934PubMedCentralPubMedCrossRefGoogle Scholar
  8. Katsuyama T, Spicer SS (1978) Histochemical differentiation of complex carbohydrates with variants of the concanavalin A – horseradish peroxidase method. J Histochem Cytochem 26:233–250PubMedCrossRefGoogle Scholar
  9. Kawakubo M, Ito Y, Okimura Y, Kobayashi M, Sakura K, Kasama S, Fukuda MN, Fukuda M, Katsuyama T, Nakayama J (2004) Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305:1003–1006PubMedCrossRefGoogle Scholar
  10. Kochetkov NK, Derevitskaya VA, Arbatsky NP (1976) The structure of pentasaccharides and hexasaccharides from blood group substance H. Eur J Biochem 67:129–136PubMedCrossRefGoogle Scholar
  11. Kojima Y, Fukumoto S, Furukawa K, Okajima T, Wiels J, Yokoyama K, Suzuki Y, Urano T, Ohta M, Furukawa K (2000) Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem 275:15152–15156PubMedCrossRefGoogle Scholar
  12. Kurihara M, Ishihara K, Ota H, Katsuyama T, Nakano T, Naito M, Hotta K (1998) Comparison of four monoclonal antibodies reacting with gastric gland mucous cell-derived mucins of rat and frog. Comp Biochem Physiol 121B:315–321CrossRefGoogle Scholar
  13. Lee H, Kobayashi M, Wang P, Nakayama J, Seeberger PH, Fukuda M (2006) Expression cloning of cholesterol α-glucosyltransferase, a unique enzyme that can be inhibited by natural antibiotic gastric mucin O-glycans, from Helicobacter pylori. Biochem Biophys Res Commun 349:1235–1241PubMedCrossRefGoogle Scholar
  14. Lloyd KO, Kabat EA, Beychok S (1969) Immunochemical studies on blood groups. XLIII. The interaction of blood group substances from various sources with a plant lectin, Concanavalin A. J Immunol 102:1354–1362PubMedGoogle Scholar
  15. Nakamura N, Ota H, Katsuyama T, Akamatsu T, Ishihara K, Kurihara K, Hotta K (1998) Histochemical reactivity of normal, metaplastic, and neoplastic tissues to α-linked N-acetylglucosamine residue-specific monoclonal antibody HIK1083. J Histochem Cytochem 46:793–801PubMedCrossRefGoogle Scholar
  16. Nakayama J, Yeh J-C, Misra AK, Ito S, Katsuyama T, Fukuda M (1999) Expression cloning of a human α1,4-N-acetylglucosaminyltransferase that forms GlcNAcα1→4Galβ→R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc Natl Acad Sci USA 96:8991–8996PubMedCrossRefGoogle Scholar
  17. Ota H, Nakayama J, Momose M, Kurihara M, Ishihara K, Hotta K, Katsuyama T (1998) New monoclonal antibodies against gastric gland mucous cell-type mucins: a comparative immunohistochemical study. Histochem Cell Biol 110:113–119PubMedCrossRefGoogle Scholar
  18. Peek RM Jr, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2:28–37PubMedCrossRefGoogle Scholar
  19. Shimizu F, Nakayama J, Ishizone S, Zhang MX, Kawakubo M, Ota H, Sugiyama A, Kawasaki S, Fukuda M, Katsuyama T (2003) Usefulness of the real-time reverse transcription-polymerase chain reaction assay targeted to α1,4-N-acetylglucosaminyltransferase for the detection of gastric cancer. Lab Invest 83:187–197PubMedCrossRefGoogle Scholar
  20. Van Halbeek H, Gerwig GJ, Vliegenthart JG, Smits HL, Van Kerkhof PJ, Kramer MF (1983) Terminal α(1→4)-linked N-acetylglucosamine: a characteristic constituent of duodenal-gland mucous glycoproteins in rat and pig. A high-resolution 1H-NMR study. Biochim Biophys Acta 747:107–116PubMedCrossRefGoogle Scholar
  21. Zhang MX, Nakayama J, Hidaka E, Kubota S, Yan J, Ota H, Fukuda M (2001) Immunohistochemical demonstration of α1,4-N-acetylglucosaminyltransferase that forms GlcNAcα1,4Galβ residues in human gastrointestinal mucosa. J Histochem Cytochem 49:587–596PubMedCrossRefGoogle Scholar
  22. Zheng Z, Jia Y, Hou L, Persson C, Yeager M, Lissowska J, Chanock SJ, Blaser M, Chow W, Ye W (2009) Genetic variation in α4GnT in relation to Helicobacter pylori serology and gastric cancer risk. Helicobacter 14:472–477CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Molecular PathologyShinshu University Graduate School of MedicineMatsumotoJapan

Personalised recommendations