Mannosidase, Alpha, Class 2a1 (MAN2A1, Golgi α-Mannosidase II)

  • Kelley W. Moremen
  • Alison V. Nairn
Reference work entry


Maturation of N-glycans from oligomannose to complex-type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms (Haltiwanger and Lowe 2004; Moremen et al. 2012; Varki 1993). Critical steps in the N-glycan biosynthetic pathway include the trimming of glucose and mannose residues by processing α-glucosidases and α-mannosidases in the endoplasmic reticulum (ER) and Golgi complex to result in the Man3GlcNAc2 core structure necessary for conversion to complex-type N-glycans (Aebi et al. 2010; Moremen 2000; Moremen and Touster 1988, Moremen et al. 1994, 2012). The mammalian exo-α-mannosidases comprise two separate families of enzymes (CAZy glycosylhydrolase families 38 (GH38) and 47 (GH47) (Coutinho et al. 2003; Coutinho and Henrissat 1999)) that are distinguished by differences in sequence, protein structural domains, enzymatic characteristics, and catalytic mechanisms (Moremen 2000; Moremen and Touster 1988; Moremen and Molinari 2006; Moremen et al. 1994). The ER α-glucosidases (Roth et al. 2010) and GH47 α-mannosidases (Moremen and Molinari 2006) act to trim early glycan processing intermediates to Man5GlcNAc2-Asn structures prior to the action of MGAT1, which adds a single GlcNAc residue to the α1,3 branch of the tri-mannosyl core (Schachter 1991, 2000) (Fig. 116.1). Members of GH38, including Golgi a-mannosidase II and Golgi α-mannosidase IIx, reside in the Golgi complex (Igdoural et al. 1999) and act to cleave two additional terminal mannose residues (Man-α1,3Man and Man-α1,6Man) to yield the GlcNAcMan3GlcNAc2-Asn intermediate necessary for processing to complex-type structures (Moremen 2000, 2002; Moremen and Touster 1988). Other mammalian members the GH38 family of enzymes are catabolic enzymes in lysosomes and cytosol. This chapter is focused on the Golgi processing enzyme, Golgi α-mannosidase II (also known as α1,3-(α1,6)-mannosidase II, N-acetylglucosamine (GlcNAc) transferase I-dependent α1,3(α1,6)-mannosidase, mannosyl-oligosaccharide 1,3-1,6-α-mannosidase, and 1,3-(1,6)mannosyl-oligosaccharide α-d-mannohydrolase), and its roles in N-glycan maturation in the Golgi complex.


Golgi Complex Glycan Structure GlcNAc Residue Congenital Dyserythropoietic Anemia Metazoan Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82PubMedCrossRefGoogle Scholar
  2. Akama TO, Nakagawa H, Wong NK, Sutton-Smith M, Dell A, Morris HR, Nakayama J, Nishimura S, Pai A, Moremen KW, Marth JD, Fukuda MN (2006) Essential and mutually compensatory roles of alpha-mannosidase II and alpha-mannosidase IIx in N-glycan processing in vivo in mice. Proc Natl Acad Sci USA 103:8983–8988PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baron MD, Garoff H (1990) Mannosidase II and the 135-kDa Golgi-specific antigen recognized monoclonal antibody 53FC3 are the same dimeric protein. J Biol Chem 265:19928–19931PubMedGoogle Scholar
  4. Bianchi P, Fermo E, Vercellati C, Boschetti C, Barcellini W, Iurlo A, Marcello AP, Righetti PG, Zanella A (2009) Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene. Hum Mutat 30:1292–1298PubMedCrossRefGoogle Scholar
  5. Chui D, Oh-Eda M, Liao YF, Panneerselvam K, Lal A, Marek KW, Freeze HH, Moremen KW, Fukuda MN, Marth JD (1997) α-Mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90:157–167PubMedCrossRefGoogle Scholar
  6. Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, Morris H, Dell A, Marth J (2001) Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci USA 98:1142–1147PubMedCentralPubMedCrossRefGoogle Scholar
  7. Coleman DJ, Kuntz DA, Venkatesan M, Cook GM, Williamson SP, Rose DR, Naleway JJ (2010) A long-wavelength fluorescent substrate for continuous fluorometric determination of alpha-mannosidase activity: resorufin alpha-d-mannopyranoside. Anal Biochem 399:7–12PubMedCentralPubMedCrossRefGoogle Scholar
  8. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12Google Scholar
  9. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  10. Daniel PF, Warren CD, James LF (1984) Swainsonine-induced oligosaccharide excretion in sheep. Time-dependent changes in the oligosaccharide profile. Biochem J 221:601–607PubMedGoogle Scholar
  11. Dennis JW (1986) Effects of swainsonine and polyinosinic:polycytidylic acid on murine tumor cell growth and metastasis. Cancer Res 46:5131–5136PubMedGoogle Scholar
  12. Dennis JW, Koch K, Beckner D (1989) Inhibition of human HT29 colon carcinoma growth in vitro and in vivo by swainsonine and human interferon-alpha 2. J Natl Cancer Inst 81:1028–1033PubMedCrossRefGoogle Scholar
  13. Dennis JW, Koch K, Yousefi S, VanderElst I (1990) Growth inhibition of human melanoma tumor xenografts in athymic nude mice by swainsonine. Cancer Res 50:1867–1872PubMedGoogle Scholar
  14. Dennis JW, White SL, Freer AM, Dime D (1993) Carbonoyloxy analogs of the anti-metastatic drug swainsonine. Activation in tumor cells by esterases. Biochem Pharmacol 46:1459–1466PubMedCrossRefGoogle Scholar
  15. Dennis JW, Granovsky M, Warren CE (1999a) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473:21–34PubMedCrossRefGoogle Scholar
  16. Dennis JW, Granovsky M, Warren CE (1999b) Protein glycosylation in development and disease. Bioessays 21:412–421PubMedCrossRefGoogle Scholar
  17. Dewald B, Touster O (1973) A new α-d-mannosidase occurring in Golgi membranes. J Biol Chem 248:7223–7233PubMedGoogle Scholar
  18. Dorling PR, Huxtable CR, Colegate SM (1980) Inhibition of lysosomal alpha-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem J 191:649–651PubMedGoogle Scholar
  19. Elbein A (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063PubMedGoogle Scholar
  20. Elbein AD, Solf R, Dorling PR, Vosbeck K (1981) Swainsonine: an inhibitor of glycoprotein processing. Proc Natl Acad Sci USA 78:7393–7397PubMedCentralPubMedCrossRefGoogle Scholar
  21. Elbein AD, Dorling PR, Vosbeck K, Horisberger M (1982) Swainsonine prevents the processing of the oligosaccharide chains of influenza virus hemagglutinin. J Biol Chem 257:1573–1576PubMedGoogle Scholar
  22. Fiaux H, Kuntz DA, Hoffman D, Janzer RC, Gerber-Lemaire S, Rose DR, Juillerat-Jeanneret L (2008) Functionalized pyrrolidine inhibitors of human type II alpha-mannosidases as anti-cancer agents: optimizing the fit to the active site. Bioorg Med Chem 16:7337–7346PubMedCrossRefGoogle Scholar
  23. Foster JM, Yudkin B, Lockyer AE, Roberts DB (1995) Cloning and sequence analysis of GmII, a Drosophila melanogaster homologue of the cDNA encoding murine Golgi α-mannosidase II. Gene 154:183–186PubMedCrossRefGoogle Scholar
  24. Fukuda MN (1993) Congenital dyserythropoietic anaemia type II (HEMPAS) and its molecular basis. Baillieres Clin Haematol 6:493–511PubMedCrossRefGoogle Scholar
  25. Fukuda MN (1999) HEMPAS. Hereditary erythroblastic multinuclearity with positive acidified serum lysis test. Biochim Biophys Acta 1455:231–239PubMedCrossRefGoogle Scholar
  26. Fukuda MN, Akama TO (2002) In vivo role of alpha-mannosidase IIx: ineffective spermatogenesis resulting from targeted disruption of the Man2a2 in the mouse. Biochim Biophys Acta 1573:382–387PubMedCrossRefGoogle Scholar
  27. Fukuda MN, Masri KA, Dell A, Luzzatto L, Moremen KW (1990) Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding α-mannosidase II. Proc Natl Acad Sci USA 87:7443–7447PubMedCentralPubMedCrossRefGoogle Scholar
  28. Goss PE, Baker MA, Carver JP, Dennis JW (1995) Inhibitors of carbohydrate processing: a new class of anticancer agents. Clin Cancer Res 1:935–944PubMedGoogle Scholar
  29. Goss PE, Reid CL, Bailey D, Dennis JW (1997) Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin Cancer Res 3:1077–1086PubMedGoogle Scholar
  30. Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537PubMedCrossRefGoogle Scholar
  31. Harpaz N, Schachter H (1980) Control of glycoprotein synthesis: processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-d-mannosidases dependent on the prior action of UDP-N-Acetylglucosamine: α-d-mannoside β2-N-acetylglucosaminyltransferase I. J Biol Chem 255:4894–4902PubMedGoogle Scholar
  32. Heikinheimo P, Helland R, Leiros HK, Leiros I, Karlsen S, Evjen G, Ravelli R, Schoehn G, Ruigrok R, Tollersrud OK, McSweeney S, Hough E (2003) The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J Mol Biol 327:631–644PubMedCrossRefGoogle Scholar
  33. Igdoural SA, Herscovics A, Lal A, Moremen KW, Morales CR, Hermo L (1999) α-Mannosidases involved in N-glycan processing show cell specificity and distinct subcompartmentalization within the Golgi apparatus of cells in the testis and epididymis. E J Cell Biol 78:441–452Google Scholar
  34. Iolascon A, De Mattia D, Perrotta S, Carella M, Gasparini P, Lambertenghi Deliliers G (1998) Genetic heterogeneity of congenital dyserythropoietic anemia type II. Blood 92:2593–2594PubMedGoogle Scholar
  35. Iolascon A, Delaunay J, Wickramasinghe SN, Perrotta S, Gigante M, Camaschella C (2001) Natural history of congenital dyserythropoietic anemia type II. Blood 98:1258–1260PubMedCrossRefGoogle Scholar
  36. Jarvis DL, Bohlmeyer DA, Liao YF, Lomax KK, Merkle RK, Weinkauf C, Moremen KW (1997) Isolation and characterization of a class II α-mannosidase cDNA from lepidopteran insect cells. Glycobiology 7:113–127PubMedCrossRefGoogle Scholar
  37. Kaushal GP, Szumilo T, Pastuszak I, Elbein AD (1990) Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry 29:2168–2176PubMedCrossRefGoogle Scholar
  38. Kawatkar SP, Kuntz DA, Woods RJ, Rose DR, Boons GJ (2006) Structural basis of the inhibition of Golgi alpha-mannosidase II by mannostatin A and the role of the thiomethyl moiety in ligand-protein interactions. J Am Chem Soc 128:8310–8319PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kornfeld S, Li E, Tabas I (1978) The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J Biol Chem 253:7771–7778PubMedGoogle Scholar
  40. Kumar NS, Kuntz DA, Wen X, Pinto BM, Rose DR (2008) Binding of sulfonium-ion analogues of di-epi-swainsonine and 8-epi-lentiginosine to Drosophila Golgi alpha-mannosidase II: the role of water in inhibitor binding. Proteins 71:1484–1496PubMedCrossRefGoogle Scholar
  41. Kuntz DA, Tarling CA, Withers SG, Rose DR (2008) Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen. Biochemistry 47:10058–10068PubMedCrossRefGoogle Scholar
  42. Kuntz DA, Zhong W, Guo J, Rose DR, Boons GJ (2009) The molecular basis of inhibition of Golgi alpha-mannosidase II by mannostatin A. Chembiochem 10:268–277PubMedCrossRefGoogle Scholar
  43. Kuntz DA, Nakayama S, Shea K, Hori H, Uto Y, Nagasawa H, Rose DR (2010) Structural investigation of the binding of 5-substituted swainsonine analogues to Golgi alpha-mannosidase II. Chembiochem 11:673–680PubMedCrossRefGoogle Scholar
  44. Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW (1998) Substrate specificities of recombinant murine Golgi α1,2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing α1,2-mannosidases. Glycobiology 8:981–995PubMedCrossRefGoogle Scholar
  45. Li B, Kawatkar SP, George S, Strachan H, Woods RJ, Siriwardena A, Moremen KW, Boons GJ (2004) Inhibition of Golgi mannosidase II with mannostatin A analogues: synthesis, biological evaluation, and structure-activity relationship studies. Chembiochem 5:1220–1227PubMedCrossRefGoogle Scholar
  46. Liao Y-F, Lal A, Moremen KW (1996) Cloning, expression, purification, and characterization of the human broad specificity Lysosomal Acid α-Mannosidase. J Biol Chem 271:28348–28358PubMedCrossRefGoogle Scholar
  47. Matsuura F, Nunez HA, Grabowski GA, Sweeley CC (1981) Structural studies of urinary oligosaccharides from patients with mannosidosis. Arch Biochem Biophys 207:337–352PubMedCrossRefGoogle Scholar
  48. Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD (1994) Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J 13:2056–2065PubMedGoogle Scholar
  49. Misago M, Liao Y, Kudo S, Eto S, Mattei M, Moremen K, Fukuda M (1995) Molecular cloning and expression of cDNAs encoding human α-mannosidase II and a previously unrecognized α-mannosidase IIx isozyme. Proc Natl Acad Sci USA 92:11766–11770PubMedCentralPubMedCrossRefGoogle Scholar
  50. Moremen KW (1989) Isolation of a rat liver Golgi mannosidase II clone by mixed oligonucleotide-primed amplification of cDNA. Proc Natl Acad Sci USA 86:5276–5280PubMedCentralPubMedCrossRefGoogle Scholar
  51. Moremen K (2000) a-Mannosidases in Asparagine-linked oligosaccharide processing and catabolism. In: Ernst B, Hart G, Sinay P (eds) Oligosaccharides in chemistry and biology: a comprehensive handbook, vol. II: biology of Saccharides, part 1: biosynthesis of Glycoconjugates. Wiley, New York, pp 81–117, Vol IIGoogle Scholar
  52. Moremen KW (2002) Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta 1573:225–235PubMedCrossRefGoogle Scholar
  53. Moremen KW, Molinari M (2006) N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol 16:592–599PubMedCrossRefGoogle Scholar
  54. Moremen KW, Robbins PW (1991) Isolation, characterization, and expression of cDNAs encoding murine α-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J Cell Biol 115:1521–1534PubMedCrossRefGoogle Scholar
  55. Moremen KW, Touster O (1988) Mannosidases in mammalian glycoprotein processing. In: Das RC, Robbins PW (eds) Protein transfer and Organelle biogenesis. Academic, San Diego, pp 209–240Google Scholar
  56. Moremen KW, Touster O, Robbins PW (1991) Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem 266:16876–16885PubMedGoogle Scholar
  57. Moremen KW, Trimble RB, Herscovics A (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4:113–125PubMedCrossRefGoogle Scholar
  58. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462PubMedCrossRefGoogle Scholar
  59. Novikoff PM, Touster O, Novikoff AB, Tulsiani DP (1985) Effects of swainsonine on rat liver and kidney: biochemical and morphological studies. J Cell Biol 101:339–349PubMedCrossRefGoogle Scholar
  60. Numao S, Kuntz DA, Withers SG, Rose DR (2003) Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J Biol Chem 278:48074–48083PubMedCrossRefGoogle Scholar
  61. Palamarczyk G, Mitchell M, Smith PW, Fleet GW, Elbein AD (1985) 1,4-Dideoxy-1,4-imino-d-mannitol inhibits glycoprotein processing and mannosidase. Arch Biochem Biophys 243:35–45PubMedCrossRefGoogle Scholar
  62. Park C, Meng L, Stanton LH, Collins RE, Mast SW, Yi X, Strachan H, Moremen KW (2005) Characterization of a human core-specific lysosomal alpha1,6-mannosidase involved in N-glycan catabolism. J Biol Chem 280:37204–37216PubMedCentralPubMedCrossRefGoogle Scholar
  63. Paulson JC, Colley KJ (1989) Glycosyltransferases : structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264:17615–17618PubMedGoogle Scholar
  64. Rabouille C, Kuntz DA, Lockyer A, Watson R, Signorelli T, Rose DR, van den Heuvel M, Roberts DB (1999) The Drosophila GMII gene encodes a Golgi alpha-mannosidase II. J Cell Sci 112:3319–3330PubMedGoogle Scholar
  65. Rose DR (2012) Structure, mechanism and inhibition of Golgi alpha-mannosidase II. Curr Opin Struct Biol 22:558–562PubMedCrossRefGoogle Scholar
  66. Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506PubMedCrossRefGoogle Scholar
  67. Schachter H (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461PubMedCrossRefGoogle Scholar
  68. Schachter H (2000) The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J 17:465–483PubMedCrossRefGoogle Scholar
  69. Schwarz K, Iolascon A, Verissimo F, Trede NS, Horsley W, Chen W, Paw BH, Hopfner KP, Holzmann K, Russo R, Esposito MR, Spano D, De Falco L, Heinrich K, Joggerst B, Rojewski MT, Perrotta S, Denecke J, Pannicke U, Delaunay J, Pepperkok R, Heimpel H (2009) Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet 41:936–940PubMedCrossRefGoogle Scholar
  70. Shah N, Kuntz DA, Rose DR (2008) Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci USA 105:9570–9575PubMedCentralPubMedCrossRefGoogle Scholar
  71. Shaheen PE, Stadler W, Elson P, Knox J, Winquist E, Bukowski RM (2005) Phase II study of the efficacy and safety of oral GD0039 in patients with locally advanced or metastatic renal cell carcinoma. Invest New Drugs 23:577–581PubMedCrossRefGoogle Scholar
  72. Siriwardena A, Strachan H, El-Daher S, Way G, Winchester B, Glushka J, Moremen K, Boons GJ (2005) Potent and selective inhibition of class II alpha-d-mannosidase activity by a bicyclic sulfonium salt. Chembiochem 6:845–848PubMedCrossRefGoogle Scholar
  73. Suits MD, Zhu Y, Taylor EJ, Walton J, Zechel DL, Gilbert HJ, Davies GJ (2010) Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase. PLoS One 5:e9006PubMedCentralPubMedCrossRefGoogle Scholar
  74. Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. III. Identification of an a-d-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J Biol Chem 253:7779–7786PubMedGoogle Scholar
  75. Tabas I, Schlesinger S, Kornfeld S (1978) Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem 253:716–722PubMedGoogle Scholar
  76. Tropea JE, Kaushal GP, Pastuszak I, Mitchell M, Aoyagi T, Molyneux RJ, Elbein AD (1990) Mannostatin A, a new glycoprotein-processing inhibitor. Biochemistry 29:10062–10069PubMedCrossRefGoogle Scholar
  77. Tulsiani DR, Touster O (1983) Swainsonine, a potent mannosidase inhibitor, elevates rat liver and brain lysosomal alpha-d-mannosidase, decreases Golgi alpha-d-mannosidase II, and increases the plasma levels of several acid hydrolases. Arch Biochem Biophys 224:594–600PubMedCrossRefGoogle Scholar
  78. Tulsiani DR, Opheim DJ, Touster O (1977) Purification and characterization of α-d-mannosidase from rat liver golgi membranes. J Biol Chem 252:3227–3233PubMedGoogle Scholar
  79. Tulsiani DR, Harris TM, Touster O (1982a) Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem 257:7936–7939PubMedGoogle Scholar
  80. Tulsiani DR, Hubbard SC, Robbins PW, Touster O (1982b) α-d-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. J Biol Chem 257:3660–3668PubMedGoogle Scholar
  81. Tulsiani DR, Broquist HP, James LF, Touster O (1984) The similar effects of swainsonine and locoweed on tissue glycosidases and oligosaccharides of the pig indicate that the alkaloid is the principal toxin responsible for the induction of locoism. Arch Biochem Biophys 232:76–85PubMedCrossRefGoogle Scholar
  82. van den Elsen JM, Kuntz DA, Rose DR (2001) Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J 20:3008–3017PubMedCrossRefGoogle Scholar
  83. Varki A (1993) Biological roles Of Oligosaccharides – all of the theories are correct. Glycobiology 3:97–130PubMedCrossRefGoogle Scholar
  84. Wang Y, Tan J, Sutton-Smith M, Ditto D, Panico M, Campbell RM, Varki NM, Long JM, Jaeken J, Levinson SR, Wynshaw-Boris A, Morris HR, Le D, Dell A, Schachter H, Marth JD (2001) Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis. Glycobiology 11:1051–1070PubMedCrossRefGoogle Scholar
  85. Wen X, Yuan Y, Kuntz DA, Rose DR, Pinto BM (2005) A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II. Biochemistry 44:6729–6737PubMedCrossRefGoogle Scholar
  86. Zhong W, Kuntz DA, Ember B, Singh H, Moremen KW, Rose DR, Boons GJ (2008) Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant. J Am Chem Soc 130:8975–8983PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Complex Carbohydrate Research CenterThe University of GeorgiaAthensUSA

Personalised recommendations