Advertisement

Exostosin 1,2 (EXT1,2)

  • Hiroshi Kitagawa
  • Satomi Nadanaka
Reference work entry

Abstract

Proteoglycans (PGs) that carry the heparan sulfate (HS) glycosaminoglycans (GAGs) are ubiquitously expressed on cell surfaces and in extracellular matrices, and these HS chains interact with numerous proteins including growth factors, morphogens, and extracellular matrix proteins. These interactions form the basis of HS-related biological phenomena. Thus, the biosynthesis of HS regulates key events in embryonic development and physiological homeostasis, and deranged HS biosynthesis can cause diseases.

Keywords

Heparan Sulfate EXT2 Gene Acceptor Substrate Mouse ESCs Hereditary Multiple Exostosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn J, Ludecke HJ, Lindow S, Horton WA, Lee B, Wagner MJ, Horsthemke B, Wells DE (1995) Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 11:137–143PubMedCrossRefGoogle Scholar
  2. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baldwin RJ, ten Dam GB, van Kuppevelt TH, Lacaud G, Gallagher JT, Kouskoff V, Merry CL (2008) A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation. Stem Cells 26:3108–3118PubMedCrossRefGoogle Scholar
  4. Bao X, Moseman EA, Saito H, Petryniak B, Thiriot A, Hatakeyama S, Ito Y, Kawashima H, Yamaguchi Y, Lowe JB, von Andrian UH, Fukuda M (2010) Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33:817–829PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bellaiche Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394:85–88PubMedCrossRefGoogle Scholar
  6. Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131:1927–1938PubMedCrossRefGoogle Scholar
  7. Cheung PK, Mc Cormick C, Crawford BE, Esko JD, Tufaro F, Duncan G (2001) Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. Am J Hum Genet 69:55–66PubMedCentralPubMedCrossRefGoogle Scholar
  8. Clines GA, Ashley JA, Shah S, Lovett M (1997) The structure of the human multiple exostoses 2 gene and characterization of homologs in mouse and Caenorhabditis elegans. Genome Res 7:359–367PubMedGoogle Scholar
  9. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410PubMedCrossRefGoogle Scholar
  10. Francannet C, Cohen-Tanugi A, Le Merrer M, Munnich A, Bonaventure J, Legeai-Mallet L (2001) Genotype-phenotype correlation in hereditary multiple exostoses. J Med Genet 38:430–434PubMedCrossRefGoogle Scholar
  11. Fritz TA, Gabb MM, Wei G, Esko JD (1994) Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate. J Biol Chem 269:28809–28814PubMedGoogle Scholar
  12. Garner OB, Bush KT, Nigam KB, Yamaguchi Y, Xu D, Esko JD, Nigam SK (2011) Stage-dependent regulation of mammary ductal branching by heparan sulfate and HGF-cMet signaling. Dev Biol 355:394–403PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hameetman L, David G, Yavas A, White SJ, Taminiau AH, Cleton-Jansen AM, Hogendoorn PC, Bovee JV (2007) Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas. J Pathol 211:399–409PubMedCrossRefGoogle Scholar
  14. Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X, Lin X (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131:1563–1575PubMedCrossRefGoogle Scholar
  15. Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner M (1995) Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet 56:1125–1131PubMedCentralPubMedGoogle Scholar
  16. Holley RJ, Pickford CE, Rushton G, Lacaud G, Gallagher JT, Kouskoff V, Merry CL (2011) Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides. J Biol Chem 286:6241–6252PubMedCrossRefGoogle Scholar
  17. Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046PubMedCrossRefGoogle Scholar
  18. Irie F, Badie-Mahdavi H, Yamaguchi Y (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci USA 109:5052–5056PubMedCrossRefGoogle Scholar
  19. Izumikawa T, Egusa N, Taniguchi F, Sugahara K, Kitagawa H (2006) Heparan sulfate polymerization in Drosophila. J Biol Chem 281:1929–1934PubMedCrossRefGoogle Scholar
  20. Jennes I, Zuntini M, Mees K, Palagani A, Pedrini E, De Cock G, Fransen E, Vanden Berghe W, Sangiorgi L, Wuyts W (2012) Identification and functional characterization of the human EXT1 promoter region. Gene 492:148–159PubMedCrossRefGoogle Scholar
  21. Kim BT, Kitagawa H, Tamura J, Saito T, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc Natl Acad Sci USA 98:7176–7181PubMedCrossRefGoogle Scholar
  22. Kim BT, Kitagawa H, Tamura Ji J, Kusche-Gullberg M, Lindahl U, Sugahara K (2002) Demonstration of a novel gene DEXT3 of Drosophila melanogaster as the essential N-acetylglucosamine transferase in the heparan sulfate biosynthesis: chain initiation and elongation. J Biol Chem 277:13659–13665PubMedCrossRefGoogle Scholar
  23. Kim BT, Kitagawa H, Tanaka J, Tamura J, Sugahara K (2003) In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction. J Biol Chem 278:41618–41623PubMedCrossRefGoogle Scholar
  24. Kitagawa H, Egusa N, Tamura JI, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J Biol Chem 276:4834–4838PubMedCrossRefGoogle Scholar
  25. Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura J, Gengyo-Ando K, Mitani S, Nomura K, Sugahara K (2007) Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis. J Biol Chem 282:8533–8544PubMedCrossRefGoogle Scholar
  26. Koziel L, Kunath M, Kelly OG, Vortkamp A (2004) EXT1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 6:801–813PubMedCrossRefGoogle Scholar
  27. Kraushaar DC, Yamaguchi Y, Wang L (2010) Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem 285:5907–5916PubMedCrossRefGoogle Scholar
  28. Kraushaar DC, Rai S, Condac E, Nairn A, Zhang S, Yamaguchi Y, Moremen K, Dalton S, Wang L (2012) Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem 287:22691–22700PubMedCrossRefGoogle Scholar
  29. Li Q, Loeb JA (2001) Neuregulin-heparan-sulfate proteoglycan interactions produce sustained erbB receptor activation required for the induction of acetylcholine receptors in muscle. J Biol Chem 276:38068–38075PubMedGoogle Scholar
  30. Lidholt K, Lindahl U (1992) Biosynthesis of heparin. The d-glucuronosyl- and N-acetyl-d-glucosaminyltransferase reactions and their relation to polymer modification. Biochem J 287(Pt 1):21–29PubMedGoogle Scholar
  31. Lidholt K, Kjellen L, Lindahl U (1989) Biosynthesis of heparin. Relationship between the polymerization and sulphation processes. Biochem J 261:999–1007PubMedGoogle Scholar
  32. Lin JH, McLean K, Morser J, Young TA, Wydro RM, Andrews WH, Light DR (1994) Modulation of glycosaminoglycan addition in naturally expressed and recombinant human thrombomodulin. J Biol Chem 269:25021–25030PubMedGoogle Scholar
  33. Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311PubMedCrossRefGoogle Scholar
  34. Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273:26265–26268PubMedCrossRefGoogle Scholar
  35. Ludecke HJ, Wagner MJ, Nardmann J, La Pillo B, Parrish JE, Willems PJ, Haan EA, Frydman M, Hamers GJ, Wells DE et al (1995) Molecular dissection of a contiguous gene syndrome: localization of the genes involved in the Langer-Giedion syndrome. Hum Mol Genet 4:31–36PubMedCrossRefGoogle Scholar
  36. Matsumoto K, Irie F, Mackem S, Yamaguchi Y (2010a) A mouse model of chondrocyte-specific somatic mutation reveals a role for EXT1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci USA 107:10932–10937PubMedCrossRefGoogle Scholar
  37. Matsumoto Y, Matsumoto K, Irie F, Fukushi J, Stallcup WB, Yamaguchi Y (2010b) Conditional ablation of the heparan sulfate-synthesizing enzyme EXT1 leads to dysregulation of bone morphogenic protein signaling and severe skeletal defects. J Biol Chem 285:19227–19234PubMedCrossRefGoogle Scholar
  38. McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F (1998) The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 19:158–161PubMedCrossRefGoogle Scholar
  39. McCormick C, Duncan G, Goutsos KT, Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 97:668–673PubMedCrossRefGoogle Scholar
  40. Mizumoto S, Uyama T, Mikami T, Kitagawa H, Sugahara K (2005) Biosynthetic pathways for differential expression of functional chondroitin sulfate and heparan sulfate. In: Yarema KJ (ed) Handbook of carbohydrate engineering. CRC Press (Taylor & Francis Group), Boca Raton, pp 289–324Google Scholar
  41. Multhaupt HA, Couchman JR (2012) Heparan sulfate biosynthesis: methods for investigation of the heparanosome. J Histochem Cytochem 60:908–915PubMedCrossRefGoogle Scholar
  42. Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M (2011) Synovial joint formation requires local EXT1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 351:70–81PubMedCentralPubMedCrossRefGoogle Scholar
  43. Nadanaka S, Kitagawa H, Sugahara K (1998) Demonstration of the immature glycosaminoglycan tetrasaccharide sequence GlcAbeta1-3Galbeta1-3Galbeta1-4Xyl on recombinant soluble human alpha-thrombomodulin. An oligosaccharide structure on a “part-time” proteoglycan. J Biol Chem 273:33728–33734PubMedCrossRefGoogle Scholar
  44. Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–246PubMedCentralPubMedCrossRefGoogle Scholar
  45. Philippe C, Porter DE, Emerton ME, Wells DE, Simpson AH, Monaco AP (1997) Mutation screening of the EXT1 and EXT2 genes in patients with hereditary multiple exostoses. Am J Hum Genet 61:520–528PubMedCentralPubMedCrossRefGoogle Scholar
  46. Presto J, Thuveson M, Carlsson P, Busse M, Wilen M, Eriksson I, Kusche-Gullberg M, Kjellen L (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci USA 105:4751–4756PubMedCrossRefGoogle Scholar
  47. Raskind WH, Conrad EU, Chansky H, Matsushita M (1995) Loss of heterozygosity in chondrosarcomas for markers linked to hereditary multiple exostoses loci on chromosomes 8 and 11. Am J Hum Genet 56:1132–1139PubMedCentralPubMedGoogle Scholar
  48. Ropero S, Setien F, Espada J, Fraga MF, Herranz M, Asp J, Benassi MS, Franchi A, Patino A, Ward LS, Bovee J, Cigudosa JC, Wim W, Esteller M (2004) Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells. Hum Mol Genet 13:2753–2765PubMedCrossRefGoogle Scholar
  49. Rudenko G, Hohenester E, Muller YA (2001) LG/LNS domains: multiple functions – one business end? Trends Biochem Sci 26:363–368PubMedCrossRefGoogle Scholar
  50. Schmale GA, Conrad EU 3rd, Raskind WH (1994) The natural history of hereditary multiple exostoses. J Bone Joint Surg Am 76:986–992PubMedGoogle Scholar
  51. Senay C, Lind T, Muguruma K, Tone Y, Kitagawa H, Sugahara K, Lidholt K, Lindahl U, Kusche-Gullberg M (2000) The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep 1:282–286PubMedCentralPubMedCrossRefGoogle Scholar
  52. Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK (2004) Branching morphogenesis and kidney disease. Development 131:1449–1462PubMedCrossRefGoogle Scholar
  53. Shevelev OB, Rykova VI, Fedoseeva LA, Leberfarb EY, Dymshits GM, Kolosova NG (2012) Expression of EXT1, EXT2, and heparanase genes in brain of senescence-accelerated OXYS rats in early ontogenesis and during development of neurodegenerative changes. Biochemistry (Mosc) 77:56–61CrossRefGoogle Scholar
  54. Solomon L (1964) Hereditary multiple exostosis. Am J Hum Genet 16:351–363PubMedCentralPubMedGoogle Scholar
  55. Stickens D, Clines G, Burbee D, Ramos P, Thomas S, Hogue D, Hecht JT, Lovett M, Evans GA (1996) The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat Genet 14:25–32PubMedCrossRefGoogle Scholar
  56. Stickens D, Zak BM, Rougier N, Esko JD, Werb Z (2005) Mice deficient in EXT2 lack heparan sulfate and develop exostoses. Development 132:5055–5068PubMedCentralPubMedCrossRefGoogle Scholar
  57. Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10:518–527PubMedCrossRefGoogle Scholar
  58. Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82PubMedCrossRefGoogle Scholar
  59. Wuyts W, Van Hul W (2000) Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum Mutat 15:220–227PubMedCrossRefGoogle Scholar
  60. Wuyts W, Van Hul W, De Boulle K, Hendrickx J, Bakker E, Vanhoenacker F, Mollica F, Ludecke HJ, Sayli BS, Pazzaglia UE, Mortier G, Hamel B, Conrad EU, Matsushita M, Raskind WH, Willems PJ (1998) Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses. Am J Hum Genet 62:346–354PubMedCentralPubMedCrossRefGoogle Scholar
  61. Yamada S, Busse M, Ueno M, Kelly OG, Skarnes WC, Sugahara K, Kusche-Gullberg M (2004) Embryonic fibroblasts with a gene trap mutation in EXT1 produce short heparan sulfate chains. J Biol Chem 279:32134–32141PubMedCrossRefGoogle Scholar
  62. Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, Zeng W, Schwartz CE, Sommer SS (2008) Neurexin 1alpha structural variants associated with autism. Neurosci Lett 438:368–370PubMedCrossRefGoogle Scholar
  63. Zak BM, Crawford BE, Esko JD (2002) Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 1573:346–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of BiochemistryKobe Pharmaceutical UniversityHigashinada-kuJapan

Personalised recommendations