Skip to main content

Exostosin 1,2 (EXT1,2)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

Proteoglycans (PGs) that carry the heparan sulfate (HS) glycosaminoglycans (GAGs) are ubiquitously expressed on cell surfaces and in extracellular matrices, and these HS chains interact with numerous proteins including growth factors, morphogens, and extracellular matrix proteins. These interactions form the basis of HS-related biological phenomena. Thus, the biosynthesis of HS regulates key events in embryonic development and physiological homeostasis, and deranged HS biosynthesis can cause diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn J, Ludecke HJ, Lindow S, Horton WA, Lee B, Wagner MJ, Horsthemke B, Wells DE (1995) Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 11:137–143

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin RJ, ten Dam GB, van Kuppevelt TH, Lacaud G, Gallagher JT, Kouskoff V, Merry CL (2008) A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation. Stem Cells 26:3108–3118

    Article  CAS  PubMed  Google Scholar 

  • Bao X, Moseman EA, Saito H, Petryniak B, Thiriot A, Hatakeyama S, Ito Y, Kawashima H, Yamaguchi Y, Lowe JB, von Andrian UH, Fukuda M (2010) Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33:817–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellaiche Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394:85–88

    Article  CAS  PubMed  Google Scholar 

  • Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131:1927–1938

    Article  CAS  PubMed  Google Scholar 

  • Cheung PK, Mc Cormick C, Crawford BE, Esko JD, Tufaro F, Duncan G (2001) Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. Am J Hum Genet 69:55–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clines GA, Ashley JA, Shah S, Lovett M (1997) The structure of the human multiple exostoses 2 gene and characterization of homologs in mouse and Caenorhabditis elegans. Genome Res 7:359–367

    CAS  PubMed  Google Scholar 

  • Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Francannet C, Cohen-Tanugi A, Le Merrer M, Munnich A, Bonaventure J, Legeai-Mallet L (2001) Genotype-phenotype correlation in hereditary multiple exostoses. J Med Genet 38:430–434

    Article  CAS  PubMed  Google Scholar 

  • Fritz TA, Gabb MM, Wei G, Esko JD (1994) Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate. J Biol Chem 269:28809–28814

    CAS  PubMed  Google Scholar 

  • Garner OB, Bush KT, Nigam KB, Yamaguchi Y, Xu D, Esko JD, Nigam SK (2011) Stage-dependent regulation of mammary ductal branching by heparan sulfate and HGF-cMet signaling. Dev Biol 355:394–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hameetman L, David G, Yavas A, White SJ, Taminiau AH, Cleton-Jansen AM, Hogendoorn PC, Bovee JV (2007) Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas. J Pathol 211:399–409

    Article  CAS  PubMed  Google Scholar 

  • Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X, Lin X (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131:1563–1575

    Article  CAS  PubMed  Google Scholar 

  • Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner M (1995) Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet 56:1125–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holley RJ, Pickford CE, Rushton G, Lacaud G, Gallagher JT, Kouskoff V, Merry CL (2011) Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides. J Biol Chem 286:6241–6252

    Article  CAS  PubMed  Google Scholar 

  • Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Irie F, Badie-Mahdavi H, Yamaguchi Y (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci USA 109:5052–5056

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa T, Egusa N, Taniguchi F, Sugahara K, Kitagawa H (2006) Heparan sulfate polymerization in Drosophila. J Biol Chem 281:1929–1934

    Article  CAS  PubMed  Google Scholar 

  • Jennes I, Zuntini M, Mees K, Palagani A, Pedrini E, De Cock G, Fransen E, Vanden Berghe W, Sangiorgi L, Wuyts W (2012) Identification and functional characterization of the human EXT1 promoter region. Gene 492:148–159

    Article  CAS  PubMed  Google Scholar 

  • Kim BT, Kitagawa H, Tamura J, Saito T, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc Natl Acad Sci USA 98:7176–7181

    Article  CAS  PubMed  Google Scholar 

  • Kim BT, Kitagawa H, Tamura Ji J, Kusche-Gullberg M, Lindahl U, Sugahara K (2002) Demonstration of a novel gene DEXT3 of Drosophila melanogaster as the essential N-acetylglucosamine transferase in the heparan sulfate biosynthesis: chain initiation and elongation. J Biol Chem 277:13659–13665

    Article  CAS  PubMed  Google Scholar 

  • Kim BT, Kitagawa H, Tanaka J, Tamura J, Sugahara K (2003) In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction. J Biol Chem 278:41618–41623

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H, Egusa N, Tamura JI, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J Biol Chem 276:4834–4838

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura J, Gengyo-Ando K, Mitani S, Nomura K, Sugahara K (2007) Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis. J Biol Chem 282:8533–8544

    Article  CAS  PubMed  Google Scholar 

  • Koziel L, Kunath M, Kelly OG, Vortkamp A (2004) EXT1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 6:801–813

    Article  CAS  PubMed  Google Scholar 

  • Kraushaar DC, Yamaguchi Y, Wang L (2010) Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem 285:5907–5916

    Article  CAS  PubMed  Google Scholar 

  • Kraushaar DC, Rai S, Condac E, Nairn A, Zhang S, Yamaguchi Y, Moremen K, Dalton S, Wang L (2012) Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem 287:22691–22700

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Loeb JA (2001) Neuregulin-heparan-sulfate proteoglycan interactions produce sustained erbB receptor activation required for the induction of acetylcholine receptors in muscle. J Biol Chem 276:38068–38075

    CAS  PubMed  Google Scholar 

  • Lidholt K, Lindahl U (1992) Biosynthesis of heparin. The d-glucuronosyl- and N-acetyl-d-glucosaminyltransferase reactions and their relation to polymer modification. Biochem J 287(Pt 1):21–29

    CAS  PubMed  Google Scholar 

  • Lidholt K, Kjellen L, Lindahl U (1989) Biosynthesis of heparin. Relationship between the polymerization and sulphation processes. Biochem J 261:999–1007

    CAS  PubMed  Google Scholar 

  • Lin JH, McLean K, Morser J, Young TA, Wydro RM, Andrews WH, Light DR (1994) Modulation of glycosaminoglycan addition in naturally expressed and recombinant human thrombomodulin. J Biol Chem 269:25021–25030

    CAS  PubMed  Google Scholar 

  • Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311

    Article  CAS  PubMed  Google Scholar 

  • Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273:26265–26268

    Article  CAS  PubMed  Google Scholar 

  • Ludecke HJ, Wagner MJ, Nardmann J, La Pillo B, Parrish JE, Willems PJ, Haan EA, Frydman M, Hamers GJ, Wells DE et al (1995) Molecular dissection of a contiguous gene syndrome: localization of the genes involved in the Langer-Giedion syndrome. Hum Mol Genet 4:31–36

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Irie F, Mackem S, Yamaguchi Y (2010a) A mouse model of chondrocyte-specific somatic mutation reveals a role for EXT1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci USA 107:10932–10937

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Matsumoto K, Irie F, Fukushi J, Stallcup WB, Yamaguchi Y (2010b) Conditional ablation of the heparan sulfate-synthesizing enzyme EXT1 leads to dysregulation of bone morphogenic protein signaling and severe skeletal defects. J Biol Chem 285:19227–19234

    Article  CAS  PubMed  Google Scholar 

  • McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F (1998) The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 19:158–161

    Article  CAS  PubMed  Google Scholar 

  • McCormick C, Duncan G, Goutsos KT, Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 97:668–673

    Article  CAS  PubMed  Google Scholar 

  • Mizumoto S, Uyama T, Mikami T, Kitagawa H, Sugahara K (2005) Biosynthetic pathways for differential expression of functional chondroitin sulfate and heparan sulfate. In: Yarema KJ (ed) Handbook of carbohydrate engineering. CRC Press (Taylor & Francis Group), Boca Raton, pp 289–324

    Google Scholar 

  • Multhaupt HA, Couchman JR (2012) Heparan sulfate biosynthesis: methods for investigation of the heparanosome. J Histochem Cytochem 60:908–915

    Article  CAS  PubMed  Google Scholar 

  • Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M (2011) Synovial joint formation requires local EXT1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 351:70–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadanaka S, Kitagawa H, Sugahara K (1998) Demonstration of the immature glycosaminoglycan tetrasaccharide sequence GlcAbeta1-3Galbeta1-3Galbeta1-4Xyl on recombinant soluble human alpha-thrombomodulin. An oligosaccharide structure on a “part-time” proteoglycan. J Biol Chem 273:33728–33734

    Article  CAS  PubMed  Google Scholar 

  • Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Philippe C, Porter DE, Emerton ME, Wells DE, Simpson AH, Monaco AP (1997) Mutation screening of the EXT1 and EXT2 genes in patients with hereditary multiple exostoses. Am J Hum Genet 61:520–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Presto J, Thuveson M, Carlsson P, Busse M, Wilen M, Eriksson I, Kusche-Gullberg M, Kjellen L (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci USA 105:4751–4756

    Article  CAS  PubMed  Google Scholar 

  • Raskind WH, Conrad EU, Chansky H, Matsushita M (1995) Loss of heterozygosity in chondrosarcomas for markers linked to hereditary multiple exostoses loci on chromosomes 8 and 11. Am J Hum Genet 56:1132–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ropero S, Setien F, Espada J, Fraga MF, Herranz M, Asp J, Benassi MS, Franchi A, Patino A, Ward LS, Bovee J, Cigudosa JC, Wim W, Esteller M (2004) Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells. Hum Mol Genet 13:2753–2765

    Article  CAS  PubMed  Google Scholar 

  • Rudenko G, Hohenester E, Muller YA (2001) LG/LNS domains: multiple functions – one business end? Trends Biochem Sci 26:363–368

    Article  CAS  PubMed  Google Scholar 

  • Schmale GA, Conrad EU 3rd, Raskind WH (1994) The natural history of hereditary multiple exostoses. J Bone Joint Surg Am 76:986–992

    CAS  PubMed  Google Scholar 

  • Senay C, Lind T, Muguruma K, Tone Y, Kitagawa H, Sugahara K, Lidholt K, Lindahl U, Kusche-Gullberg M (2000) The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep 1:282–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK (2004) Branching morphogenesis and kidney disease. Development 131:1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Shevelev OB, Rykova VI, Fedoseeva LA, Leberfarb EY, Dymshits GM, Kolosova NG (2012) Expression of EXT1, EXT2, and heparanase genes in brain of senescence-accelerated OXYS rats in early ontogenesis and during development of neurodegenerative changes. Biochemistry (Mosc) 77:56–61

    Article  CAS  Google Scholar 

  • Solomon L (1964) Hereditary multiple exostosis. Am J Hum Genet 16:351–363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stickens D, Clines G, Burbee D, Ramos P, Thomas S, Hogue D, Hecht JT, Lovett M, Evans GA (1996) The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat Genet 14:25–32

    Article  CAS  PubMed  Google Scholar 

  • Stickens D, Zak BM, Rougier N, Esko JD, Werb Z (2005) Mice deficient in EXT2 lack heparan sulfate and develop exostoses. Development 132:5055–5068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10:518–527

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82

    Article  CAS  PubMed  Google Scholar 

  • Wuyts W, Van Hul W (2000) Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum Mutat 15:220–227

    Article  CAS  PubMed  Google Scholar 

  • Wuyts W, Van Hul W, De Boulle K, Hendrickx J, Bakker E, Vanhoenacker F, Mollica F, Ludecke HJ, Sayli BS, Pazzaglia UE, Mortier G, Hamel B, Conrad EU, Matsushita M, Raskind WH, Willems PJ (1998) Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses. Am J Hum Genet 62:346–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada S, Busse M, Ueno M, Kelly OG, Skarnes WC, Sugahara K, Kusche-Gullberg M (2004) Embryonic fibroblasts with a gene trap mutation in EXT1 produce short heparan sulfate chains. J Biol Chem 279:32134–32141

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, Zeng W, Schwartz CE, Sommer SS (2008) Neurexin 1alpha structural variants associated with autism. Neurosci Lett 438:368–370

    Article  CAS  PubMed  Google Scholar 

  • Zak BM, Crawford BE, Esko JD (2002) Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 1573:346–355

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kitagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Kitagawa, H., Nadanaka, S. (2014). Exostosin 1,2 (EXT1,2). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_81

Download citation

Publish with us

Policies and ethics