Skip to main content

UDP-Xylose and UDP-N-Acetylglucosamine Transporter (SLC35B4)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes
  • 298 Accesses

Abstract

Nucleotide sugars that are synthesized in the cytoplasm or nucleus have to be transported over the membrane of the endoplasmic reticulum (ER) or Golgi to be used by glycosyltransferases in the lumen of the secretory pathway. There is one exception; UDP-xylose is made within the lumen of the ER or Golgi (Kearns et al. 1993; Hwang and Horvitz 2002; Moriarity et al. 2002; Bakker et al. 2009), suggesting there is no need for UDP-Xyl transport over the membrane. Still, transport of externally added UDP-Xyl over the Golgi membrane of mammalian cell has been observed (Nuwayhid et al. 1986; Milla et al. 1992; Kearns et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashikov A, Routier F, Fuhlrott J, Helmus Y, Wild M, Gerardy-Schahn R, Bakker H (2005) The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J Biol Chem 280:27230–27235

    Article  CAS  PubMed  Google Scholar 

  • Ashikov A, Buettner FF, Tiemann B, Gerardy-Schahn R, Bakker H (2012) LARGE2 generates the same xylose and glucuronic acid containing glycan structures as LARGE. Glycobiology. doi:10.1093/glycob/cws153

    PubMed  Google Scholar 

  • Bakker H, Oka T, Ashikov A, Yadav A, Berger M, Rana NA, Bai X, Jigami Y, Haltiwanger RS, Esko JD, Gerardy-Schahn R (2009) Functional UDP-xylose transport across the endoplasmic reticulum/Golgi membrane in a Chinese hamster ovary cell mutant defective in UDP-xylose synthase. J Biol Chem 284:2576–2583

    Article  CAS  PubMed  Google Scholar 

  • Bossuyt X, Blanckaert N (1997) Carrier-mediated transport of uridine diphosphoglucuronic acid across the endoplasmic reticulum membrane is a prerequisite for UDP-glucuronosyltransferase activity in rat liver. Biochem J 323(Pt 3):645–648

    CAS  PubMed  Google Scholar 

  • Bossuyt X, Blanckaert N (2001) Differential regulation of UDP-GlcUA transport in endoplasmic reticulum and in Golgi membranes. J Hepatol 34:210–214

    Article  CAS  PubMed  Google Scholar 

  • Capasso JM, Hirschberg CB (1984) Mechanisms of glycosylation and sulfation in the Golgi apparatus: evidence for nucleotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane. Proc Natl Acad Sci USA 81:7051–7055

    Article  CAS  PubMed  Google Scholar 

  • Carey DJ, Sommers LW, Hirschberg CB (1980) CMP-N-acetylneuraminic acid: isolation from and penetration into mouse liver microsomes. Cell 19:597–605

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt M, Mühlenhoff M, Bethe A, Gerardy-Schahn R (1996) Expression cloning of the Golgi CMP-sialic acid transporter. Proc Natl Acad Sci USA 93:7572–7576

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt M, Gotza B, Gerardy-Schahn R (1999) Membrane topology of the mammalian CMP-sialic acid transporter. J Biol Chem 274:8779–8787

    Article  CAS  PubMed  Google Scholar 

  • Furuichi T, Kayserili H, Hiraoka S, Nishimura G, Ohashi H, Alanay Y, Lerena JC, Aslanger AD, Koseki H, Cohn DH, Superti-Furga A, Unger S, Ikegawa S (2009) Identification of loss-of-function mutations of SLC35D1 in patients with Schneckenbecken dysplasia, but not with other severe spondylodysplastic dysplasias group diseases. J Med Genet 46:562–568

    Article  CAS  PubMed  Google Scholar 

  • Götting C, Kuhn J, Zahn R, Brinkmann T, Kleesiek K (2000) Molecular cloning and expression of human UDP-d-Xylose: proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. J Mol Biol 304:517–528

    Article  PubMed  Google Scholar 

  • Guillen E, Abeijon C, Hirschberg CB (1998) Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Proc Natl Acad Sci USA 95:7888–7892

    Article  CAS  PubMed  Google Scholar 

  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Introduction. Pflugers Arch 447:465–468

    Article  CAS  PubMed  Google Scholar 

  • Hwang HY, Horvitz HR (2002) The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci USA 99:14218–14223

    Article  CAS  PubMed  Google Scholar 

  • Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012a) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inamori KI, Hara Y, Willer T, Anderson ME, Zhu Z, Yoshida-Moriguchi T, Campbell KP (2012b) Xylosyl- and glucuronyltransferase functions of LARGE in alpha-dystroglycan modification are conserved in LARGE2. Glycobiology. doi:10.1093/glycob/cws152

    PubMed  Google Scholar 

  • Ishida N, Kawakita M (2004) Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch 447:768–775

    Article  CAS  PubMed  Google Scholar 

  • Ishida N, Kuba T, Aoki K, Miyatake S, Kawakita M, Sanai Y (2005) Identification and characterization of human Golgi nucleotide sugar transporter SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family. Genomics 85:106–116

    Article  CAS  PubMed  Google Scholar 

  • Jack DL, Yang NM, Saier MH Jr (2001) The drug/metabolite transporter superfamily. Eur J Biochem 268:3620–3639

    Article  CAS  PubMed  Google Scholar 

  • Kearns AE, Vertel BM, Schwartz NB (1993) Topography of glycosylation and UDP-xylose production. J Biol Chem 268:11097–11104

    CAS  PubMed  Google Scholar 

  • Kendler KS, Kalsi G, Holmans PA, Sanders AR, Aggen SH, Dick DM, Aliev F, Shi J, Levinson DF, Gejman PV (2011) Genomewide association analysis of symptoms of alcohol dependence in the molecular genetics of schizophrenia (MGS2) control sample. Alcohol Clin Exp Res 35:963–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Sleeman JE, Coughtrie MW, Burchell B (2006) Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family. Biochem J 400:281–289

    Article  CAS  PubMed  Google Scholar 

  • Kuhn NJ, White A (1976) Evidence for specific transport of uridine diphosphate galactose across the Golgi membrane of rat mammary gland. Biochem J 154:243–244

    CAS  PubMed  Google Scholar 

  • Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Körner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28:73–76

    PubMed  Google Scholar 

  • Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28:69–72

    PubMed  Google Scholar 

  • Maszczak-Seneczko D, Olczak T, Olczak M (2011) Subcellular localization of UDP-GlcNAc, UDP-Gal and SLC35B4 transporters. Acta Biochim Pol 58:413–419

    CAS  PubMed  Google Scholar 

  • Milla ME, Hirschberg CB (1989) Reconstitution of Golgi vesicle CMP-sialic acid and adenosine 3′-phosphate 5′-phosphosulfate transport into proteoliposomes. Proc Natl Acad Sci USA 86:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Milla ME, Clairmont CA, Hirschberg CB (1992) Reconstitution into proteoliposomes and partial purification of the Golgi apparatus membrane UDP-galactose, UDP-xylose, and UDP-glucuronic acid transport activities. J Biol Chem 267:103–107

    CAS  PubMed  Google Scholar 

  • Mitchell S, Siegel DH, Shieh JT, Stevenson DA, Grimmer JF, Lewis T, Metry D, Frieden I, Blei F, Kayserili H, Drolet BA, Bayrak-Toydemir P (2012) Candidate locus analysis for PHACE syndrome. Am J Med Genet A 158A:1363–1367

    Article  PubMed Central  PubMed  Google Scholar 

  • Moriarity JL, Hurt KJ, Resnick AC, Storm PB, Laroy W, Schnaar RL, Snyder SH (2002) UDP-glucuronate decarboxylase, a key enzyme in proteoglycan synthesis: cloning, characterization, and localization. J Biol Chem 277:16968–16975

    Article  CAS  PubMed  Google Scholar 

  • Muraoka M, Kawakita M, Ishida N (2001) Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett 495:87–93

    Article  CAS  PubMed  Google Scholar 

  • Muraoka M, Miki T, Ishida N, Hara T, Kawakita M (2007) Variety of nucleotide sugar transporters with respect to the interaction with nucleoside mono- and diphosphates. J Biol Chem 282:24615–24622

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Suzuki S, Satoh T, Naito S (2009) Tissue-specific mRNA expression profiles of human solute carrier 35 transporters. Drug Metab Pharmacokinet 24:91–99

    Article  CAS  PubMed  Google Scholar 

  • Nuwayhid N, Glaser JH, Johnson JC, Conrad HE, Hauser SC, Hirschberg CB (1986) Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum. J Biol Chem 261:12936–12941

    CAS  PubMed  Google Scholar 

  • Perez M, Hirschberg CB (1985) Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. J Biol Chem 260:4671–4678

    CAS  PubMed  Google Scholar 

  • Puglielli L, Hirschberg CB (1999) Reconstitution, identification, and purification of the rat liver Golgi membrane GDP-fucose transporter. J Biol Chem 274:35596–35600

    Article  CAS  PubMed  Google Scholar 

  • Roy SK, Chiba Y, Takeuchi M, Jigami Y (2000) Characterization of yeast Yea4p, a uridine diphosphate-N-acetylglucosamine transporter localized in the endoplasmic reticulum and required for chitin synthesis. J Biol Chem 275:13580–13587

    Article  CAS  PubMed  Google Scholar 

  • Seal RL, Gordon SM, Lush MJ, Wright MW, Bruford EA (2011) Genenames.org: the HGNC resources in 2011. Nucleic Acids Res 39:D514–D519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segawa H, Kawakita M, Ishida N (2002) Human and drosophila UDP-galactose transporters transport UDP-N-acetylgalactosamine in addition to UDP-galactose. Eur J Biochem 269:128–138

    Article  CAS  PubMed  Google Scholar 

  • Sethi MK, Buettner FF, Krylov VB, Takeuchi H, Nifantiev NE, Haltiwanger RS, Gerardy-Schahn R, Bakker H (2010) Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J Biol Chem 285:1582–1586

    Article  CAS  PubMed  Google Scholar 

  • Sethi MK, Buettner FF, Ashikov A, Krylov VB, Takeuchi H, Nifantiev NE, Haltiwanger RS, Gerardy-Schahn R, Bakker H (2012) Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J Biol Chem 287:2739–2748

    Article  CAS  PubMed  Google Scholar 

  • Sommers LW, Hirschberg CB (1982) Transport of sugar nucleotides into rat liver Golgi. A new Golgi marker activity. J Biol Chem 257:10811–10817

    CAS  PubMed  Google Scholar 

  • Suda T, Kamiyama S, Suzuki M, Kikuchi N, Nakayama K, Narimatsu H, Jigami Y, Aoki T, Nishihara S (2004) Molecular cloning and characterization of a human multisubstrate specific nucleotide-sugar transporter homologous to Drosophila fringe connection. J Biol Chem 279:26469–26474

    Article  CAS  PubMed  Google Scholar 

  • Sun-Wada GH, Yoshioka S, Ishida N, Kawakita M (1998) Functional expression of the human UDP-galactose transporters in the yeast Saccharomyces cerevisiae. J Biochem 123:912–917

    Article  CAS  PubMed  Google Scholar 

  • Tiralongo J, Ashikov A, Routier F, Eckhardt M, Bakker H, Gerardy-Schahn R, von Itzstein M (2006) Functional expression of the CMP-sialic acid transporter in Escherichia coli and its identification as a simple mobile carrier. Glycobiology 16:73–81

    Article  CAS  PubMed  Google Scholar 

  • Vastermark A, Almen MS, Simmen MW, Fredriksson R, Schioth HB (2011) Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae. BMC Evol Biol 11:123

    Article  PubMed Central  PubMed  Google Scholar 

  • Yazbek SN, Buchner DA, Geisinger JM, Burrage LC, Spiezio SH, Zentner GE, Hsieh CW, Scacheri PC, Croniger CM, Nadeau JH (2011) Deep congenic analysis identifies many strong, context-dependent QTLs, one of which, Slc35b4, regulates obesity and glucose homeostasis. Genome Res 21:1065–1073

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Bakker, H., Ashikov, A. (2014). UDP-Xylose and UDP-N-Acetylglucosamine Transporter (SLC35B4). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_8

Download citation

Publish with us

Policies and ethics