ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 2 (ST8SIA2)

Reference work entry


ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 2 (ST8SIA2) is a member of a family of α2,8-sialyltransferases that transfer sialic acid from CMP-sialic acid onto sialic acid residues of other sialoglycans to generate α2,8-linked sialoglycans. ST8SIA2 is characterized by the ability to synthesize polysialic acid (polySia) structure and can therefore be subclassified as a polysialyltransferase. Both ST8SIA2 and the related polysialyltransferase ST8SIA4 (refer to the Chap. ST8SIA4) are capable of synthesizing extraordinary long polySia chains with degrees of polymerization (DP) of up to 400. ST8SIA2 is a type II transmembrane protein, similar to many other glycosyltransferases, and is composed of 375 amino acids with six N-glycans. This enzyme contains sialyl-motif (SM) L, S, VS, and III domains.


Sialic Acid Residue Acceptor Substrate Polysialic Acid Ocular Dominance Plasticity Medial Habenular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Angata K, Fukuda M (2003) Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 85:195–206PubMedCrossRefGoogle Scholar
  2. Angata K, Long JM, Bukalo O, Lee W, Dityatev A, Wynshaw-Boris A, Schachner M, Fukuda M, Marth JD (2004) Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J Biol Chem 279:32603–32613PubMedCrossRefGoogle Scholar
  3. Angata K, Nakayama J, Fredette B, Chong K, Ranscht B, Fukuda M (1997) Human STX polysialyltransferase forms the embryonic form of the neural cell adhesion molecule. Tissue-specific expression, neurite outgrowth, and chromosomal localization in comparison with another polysialyltransferase, PST. J Biol Chem 272:7182–7190PubMedCrossRefGoogle Scholar
  4. Angata K, Suzuki M, Fukuda M (1998) Differential and cooperative polysialylation of the neural cell adhesion molecule by two polysialyltransferases, PST and STX. J Biol Chem 273:28524–28532PubMedCrossRefGoogle Scholar
  5. Angata K, Suzuki M, Fukuda M (2002) ST8Sia II and ST8Sia IV polysialyltransferases exhibit marked differences in utilizing various acceptors containing oligosialic acid and short polysialic acid. The basis for cooperative polysialylation by two enzymes. J Biol Chem 277:36808–36817PubMedCrossRefGoogle Scholar
  6. Angata K, Suzuki M, McAuliffe J, Ding Y, Hindsgaul O, Fukuda M (2000) Differential biosynthesis of polysialic acid on neural cell adhesion molecule (NCAM) and oligosaccharide acceptors by three distinct alpha 2,8-sialyltransferases, ST8Sia IV (PST), ST8Sia II (STX), and ST8Sia III. J Biol Chem 275:18594–18601PubMedCrossRefGoogle Scholar
  7. Angata K, Yen TY, El-Battari A, Macher BA, Fukuda M (2001) Unique disulfide bond structures found in ST8Sia IV polysialyltransferase are required for its activity. J Biol Chem 276:15369–15377PubMedCrossRefGoogle Scholar
  8. Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Sykes N, Pagnamenta AT, Almeida J, Bacchelli E, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bölte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Carson AR, Casallo G, Casey J, Chu SH, Cochrane L, Corsello C, Crawford EL, Crossett A, Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Goldberg J, Green J, Guter SJ, Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V, Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, Le Couteur A, Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E, Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Melhem NM, Merikangas A, Migita O, Minshew NJ, Mirza GK, Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G, Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Piven J, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J, Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ, Rice JP, Salt J, Sansom K, Sato D, Segurado R, Senman L, Shah N, Sheffield VC, Soorya L, Sousa I, Stoppioni V, Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B, Thompson AP, Thomson S, Tryfon A, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Wing K, Wittemeyer K, Wood S, Yaspan BL, Zurawiecki D, Zwaigenbaum L, Betancur C, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Gallagher L, Geschwind DH, Gill M, Haines JL, Miller J, Monaco AP, Nurnberger JI Jr, Paterson AD, Pericak-Vance MA, Schellenberg GD, Scherer SW, Sutcliffe JS, Szatmari P, Vicente AM, Vieland VJ, Wijsman EM, Devlin B, Ennis S, Hallmayer J (2010) A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 19:4072–4082PubMedCrossRefGoogle Scholar
  9. Arai M, Yamada K, Toyota T, Obata N, Haga S, Yoshida Y, Nakamura K, Minabe Y, Ujike H, Sora I et al (2006) Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia. Biol Psychiatry 59:652–659PubMedCrossRefGoogle Scholar
  10. Asahina S, Sato C, Matsuno M, Matsuda T, Colley K, Kitajima K (2006) Involvement of the alpha2,8-polysialyltransferases II/STX and IV/PST in the biosynthesis of polysialic acid chains on the O-linked glycoproteins in rainbow trout ovary. J Biochem 140:687–701PubMedCrossRefGoogle Scholar
  11. Barbeau D, Liang J, Robitalille Y, Quirion R, Srivastava L (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92:2785–2789PubMedCrossRefGoogle Scholar
  12. Beecken WD, Engl T, Ogbomo H, Relja B, Cinatl J, Bereiter-Hahn J, Oppermann E, Jonas D, Blaheta RA (2005) Valproic acid modulates NCAM polysialylation and polysialyltransferase mRNA expression in human tumor cells. Int Immunopharmacol 5:757–769PubMedCrossRefGoogle Scholar
  13. Bonfanti L, Theodosis D (2009) Polysialic acid and activity-dependent synapse remodeling. Cell Adh Migr 3:43PubMedCrossRefGoogle Scholar
  14. Calandreau L, Márquez C, Bisaz R, Fantin M, Sandi C (2010) Differential impact of polysialyltransferase ST8SiaII and ST8SiaIV knockout on social interaction and aggression. Genes Brain Behav 9:958–967PubMedCrossRefGoogle Scholar
  15. Close BE, Colley KJ (1998) In vivo autopolysialylation and localization of the polysialyltransferases PST and STX. J Biol Chem 273:34586–34593PubMedCrossRefGoogle Scholar
  16. Close BE, Wilkinson JM, Bohrer TJ, Goodwin CP, Broom LJ, Colley KJ (2001) The polysialyltransferase ST8Sia II/STX: posttranslational processing and role of autopolysialylation in the polysialylation of neural cell adhesion molecule. Glycobiology 11:997–1008PubMedCrossRefGoogle Scholar
  17. Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455–459PubMedCrossRefGoogle Scholar
  18. Di Cristo G, Chattopadhyaya B, Kuhlman SJ, Fu Y, Bélanger MC, Wu CZ, Rutishauser U, Maffei L, Huang ZJ (2007) Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10:1569–1577PubMedCrossRefGoogle Scholar
  19. Eckhardt M, Bukalo O, Chazal G, Wang L, Goridis C, Schachner M, Gerardy-Schahn R, Cremer H, Dityatev A (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20:5234–5244PubMedGoogle Scholar
  20. Figarella-Branger DF, Durbec PL, Rougon GN (1990) Differential spectrum of expression of neural cell adhesion molecule isoforms and L1 adhesion molecules on human neuroectodermal tumors. Cancer Res 50:6364–6370PubMedGoogle Scholar
  21. Foley D, Swartzentruber K, Colley K (2009) Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. J Biol Chem 284:15505–15516PubMedCrossRefGoogle Scholar
  22. Gascon E, Vutskits L, Kiss J (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101–118PubMedCrossRefGoogle Scholar
  23. Hallenbeck P, Vimr E, Yu F, Bassler B, Troy F (1987) Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-alpha-2,8-sialosyl carbohydrate units. J Biol Chem 262:3553–3561PubMedGoogle Scholar
  24. Hane M, Sumida M, Kitajima K, Sato C (2012) Structural and functional impairments of polysialic acid (polySia)-neural cell adhesion molecule (NCAM) synthesized by a mutated polysialyltransferase of a schizophrenic patient. Pure Appl Chem 84:1895–1906CrossRefGoogle Scholar
  25. Inoko E, Nishiura Y, Tanaka H, Takahashi T, Furukawa K, Kitajima K, Sato C (2010) Developmental stage-dependent expression of an alpha2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 20:916–928PubMedCrossRefGoogle Scholar
  26. Isomura R, Kitajima K, Sato C (2011) Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem 286:21535–21545PubMedCrossRefGoogle Scholar
  27. Kanato Y, Kitajima K, Sato C (2008) Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology 18:1044–1053PubMedCrossRefGoogle Scholar
  28. Keys TG, Freiberger F, Ehrit J, Krueger J, Eggers K, Buettner FF, Gerardy-Schahn R (2012) A universal fluorescent acceptor for high-performance liquid chromatography analysis of pro- and eukaryotic polysialyltransferases. Anal Biochem 427:107–115PubMedCrossRefGoogle Scholar
  29. Kitagawa H, Paulson JC (1994) Differential expression of five sialyltransferase genes in human tissues. J Biol Chem 269:17872–17878PubMedGoogle Scholar
  30. Kitajima K, Inoue S, Inoue Y, Troy F (1988) Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies. J Biol Chem 263:18269–18276PubMedGoogle Scholar
  31. Kitajima K, Inoue Y, Inoue S (1986) Polysialoglycoproteins of Salmonidae fish eggs. Complete structure of 200-kDa polysialoglycoprotein from the unfertilized eggs of rainbow trout (Salmo gairdneri). J Biol Chem 261:5262–5269PubMedGoogle Scholar
  32. Kitazume-Kawaguchi S, Kabata S, Arita M (2001) Differential biosynthesis of polysialic or disialic acid structure by ST8Sia II and ST8Sia IV. J Biol Chem 276:15696–15703PubMedCrossRefGoogle Scholar
  33. Kojima N, Tachida Y, Tsuji S (1998) Alpha 1,6-linked fucose affects the expression and stability of polysialic acid-carrying glycoproteins in Chinese hamster ovary cells. J Biochem 124:726–737PubMedCrossRefGoogle Scholar
  34. Kojima N, Tachida Y, Yoshida Y, Tsuji S (1996) Characterization of mouse ST8Sia II (STX) as a neural cell adhesion molecule-specific polysialic acid synthase. Requirement of core alpha1,6-linked fucose and a polypeptide chain for polysialylation. J Biol Chem 271:19457–19463PubMedCrossRefGoogle Scholar
  35. Kojima N, Yoshida Y, Kurosawa N, Lee Y, Tsuji S (1995a) Enzymatic activity of a developmentally regulated member of the sialyltransferase family (STX): evidence for alpha 2,8-sialyltransferase activity toward N-linked oligosaccharides. FEBS Lett 360:1–4PubMedCrossRefGoogle Scholar
  36. Kojima N, Yoshida Y, Tsuji S (1995b) A developmentally regulated member of the sialyltransferase family (ST8Sia II, STX) is a polysialic acid synthase. FEBS Lett 373:119–122PubMedCrossRefGoogle Scholar
  37. Komminoth P, Roth J, Saremaslani P, Matias-Guiu X, Wolfe HJ, Heitz PU (1994) Polysialic acid of the neural cell adhesion molecule in the human thyroid: a marker for medullary thyroid carcinoma and primary C-cell hyperplasia. An immunohistochemical study on 79 thyroid lesions. Am J Surg Pathol 18:399–411PubMedCrossRefGoogle Scholar
  38. Kurosawa N, Yoshida Y, Kojima N, Tsuji S (1997) Polysialic acid synthase (ST8Sia II/STX) mRNA expression in the developing mouse central nervous system. J Neurochem 69:494–503PubMedCrossRefGoogle Scholar
  39. Lahr G, Mayerhofer A, Bucher S, Barthels D, Wille W, Gratzl M (1993) Neural cell adhesion molecules in rat endocrine tissues and tumor cells: distribution and molecular analysis. Endocrinology 132:1207–1217PubMedGoogle Scholar
  40. Livingston B, Jacobs J, Glick M, Troy F (1988) Extended polysialic acid chains (n greater than 55) in glycoproteins from human neuroblastoma cells. J Biol Chem 263:9443–9448PubMedGoogle Scholar
  41. Livingston B, Jacobs J, Shaw GW, Glick MC, Troy FA II (1987) Polysialic acid in human neuroblastoma cells. Fed Proc 46:2151Google Scholar
  42. Livingston BD, Paulson JC (1993) Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family. J Biol Chem 268:11504–11507PubMedGoogle Scholar
  43. Martersteck C, Kedersha N, Drapp D, Tsui T, Colley K (1996) Unique alpha 2, 8-polysialylated glycoproteins in breast cancer and leukemia cells. Glycobiology 6:289–301PubMedCrossRefGoogle Scholar
  44. Mayanil C, George D, Freilich L, Miljan E, Mania-Farnell B, McLone D, Bremer E (2001) Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 276:49299–49309PubMedCrossRefGoogle Scholar
  45. Mayanil C, George D, Mania-Farnell B, Bremer C, McLone D, Bremer E (2000) Overexpression of murine Pax3 increases NCAM polysialylation in a human medulloblastoma cell line. J Biol Chem 275:23259–23266PubMedCrossRefGoogle Scholar
  46. Maziade M, Roy M, Chagnon Y, Cliche D, Fournier J, Montgrain N, Dion C, Lavallée J, Garneau Y, Gingras N et al (2005) Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 10:486–499PubMedCrossRefGoogle Scholar
  47. McAuley EZ, Scimone A, Tiwari Y, Agahi G, Mowry BJ, Holliday EG, Donald JA, Weickert CS, Mitchell PB, Schofield PR, Fullerton JM (2012) Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26. PLoS One 7:e38172PubMedCentralPubMedCrossRefGoogle Scholar
  48. McCoy R, Vimr E, Troy F (1985) CMP-NeuNAc:poly-alpha-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules. J Biol Chem 260:12695–12699PubMedGoogle Scholar
  49. Miyahara R, Tanaka F, Nakagawa T, Matsuoka K, Isii K, Wada H (2001) Expression of neural cell adhesion molecules (polysialylated form of neural cell adhesion molecule and L1-cell adhesion molecule) on resected small cell lung cancer specimens: in relation to proliferation state. J Surg Oncol 77:49–54PubMedCrossRefGoogle Scholar
  50. Moolenaar CE, Muller EJ, Schol DJ, Figdor CG, Bock E, Bitter-Suermann D, Michalides RJ (1990) Expression of neural cell adhesion molecule-related sialoglycoprotein in small cell lung cancer and neuroblastoma cell lines H69 and CHP-212. Cancer Res 50:1102–1106PubMedGoogle Scholar
  51. Mühlenhoff M, Manegold A, Windfuhr M, Gotza B, Gerardy-Schahn R (2001) The impact of N-glycosylation on the functions of polysialyltransferases. J Biol Chem 276:34066–34073PubMedCrossRefGoogle Scholar
  52. Nakagawa S, Kim J, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman R (2002) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci 22:9868–9876PubMedGoogle Scholar
  53. Nakata D, Zhang L, Troy FN (2006) Molecular basis for polysialylation: a novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the alpha 2,8-polysialyltransferases is essential for polysialylation. Glycoconj J 23:423–436PubMedCrossRefGoogle Scholar
  54. Oltmann-Norden I, Galuska SP, Hildebrandt H, Geyer R, Gerardy-Schahn R, Geyer H, Mühlenhoff M (2008) Impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid synthesis during postnatal mouse brain development. J Biol Chem 283:1463–1471PubMedCrossRefGoogle Scholar
  55. Ono S, Hane M, Kitajima K, Sato C (2012) Novel regulation of fibroblast growth factor 2 (FGF2)-mediated cell growth by polysialic acid. J Biol Chem 287:3710–3722PubMedCrossRefGoogle Scholar
  56. Rollenhagen M, Kuckuck S, Ulm C, Hartmann M, Galuska SP, Geyer R, Geyer H, Mühlenhoff M (2012) Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. J Biol Chem 287:35170–35180PubMedCrossRefGoogle Scholar
  57. Roth J, Zuber C, Wagner P, Taatjes D, Weisgerber C, Heitz P, Goridis C, Bitter-Suermann D (1988a) Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor. Proc Natl Acad Sci USA 85:2999–3003PubMedCrossRefGoogle Scholar
  58. Roth J, Zuber C, Wagner P, Taatjes DJ, Weisgerber C, Heitz PU, Goridis C, Bitter-Suermann D (1988b) Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor. Proc Natl Acad Sci USA 85:2999–3003PubMedCrossRefGoogle Scholar
  59. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35PubMedCrossRefGoogle Scholar
  60. Sato C (2011) New functions of polysialic acid and its relationship to schizophrenia. Trends Glycosci Glycotechnol 23:221–238CrossRefGoogle Scholar
  61. Sato C, Kitajima K (2013) Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J Biochem 154:115–136PubMedCrossRefGoogle Scholar
  62. Scheidegger E, Sternberg L, Roth J, Lowe J (1995) A human STX cDNA confers polysialic acid expression in mammalian cells. J Biol Chem 270:22685–22688PubMedCrossRefGoogle Scholar
  63. Seidenfaden R, Hildebrandt H (2001) Retinoic acid-induced changes in polysialyltransferase mRNA expression and NCAM polysialylation in human neuroblastoma cells. J Neurobiol 46:11–28PubMedCrossRefGoogle Scholar
  64. Seifert A, Glanz D, Glaubitz N, Horstkorte R, Bork K (2012) Polysialylation of the neural cell adhesion molecule: interfering with polysialylation and migration in neuroblastoma cells. Arch Biochem Biophys 524:56–63PubMedCrossRefGoogle Scholar
  65. Senkov O, Tikhobrazova O, Dityatev A (2012) PSA-NCAM: synaptic functions mediated by its interactions with proteoglycans and glutamate receptors. Int J Biochem Cell Biol 44:591–595PubMedCrossRefGoogle Scholar
  66. Suzuki M, Nakayama J, Suzuki A, Angata K, Chen S, Sakai K, Hagihara K, Yamaguchi Y, Fukuda M (2005) Polysialic acid facilitates tumor invasion by glioma cells. Glycobiology 15:887–894PubMedCrossRefGoogle Scholar
  67. Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167PubMedCrossRefGoogle Scholar
  68. Tanaka F, Otake Y, Nakagawa T, Kawano Y, Miyahara R, Li M, Yanagihara K, Inui K, Oyanagi H, Yamada T et al (2001) Prognostic significance of polysialic acid expression in resected non- small cell lung cancer. Cancer Res 61:1666–1670PubMedGoogle Scholar
  69. Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6:v–viiPubMedCrossRefGoogle Scholar
  70. Vimr E, McCoy R, Vollger H, Wilkison N, Troy F (1984) Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes. Proc Natl Acad Sci USA 81:1971–1975PubMedCrossRefGoogle Scholar
  71. Weinhold B, Seidenfaden R, Röckle I, Mühlenhoff M, Schertzinger F, Conzelmann S, Marth J, Gerardy-Schahn R, Hildebrandt H (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280:42971–42977PubMedCrossRefGoogle Scholar
  72. Yoshida Y, Kurosawa N, Kanematsu T, Kojima N, Tsuji S (1996) Genomic structure and promoter activity of the mouse polysialic acid synthase gene (mST8Sia II). Brain-specific expression from a TATA-less GC-rich sequence. J Biol Chem 271:30167–30173PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Bioscience and Biotechnology CenterNagoya UniversityNagoyaJapan

Personalised recommendations