N-Deacetylase/N-Sulfotransferase (Heparan Glucosaminyl) 2 (NDST2)

  • Lena Kjellén
Reference work entry


Heparan sulfate (HS) proteoglycans are present at cell surfaces and in the extracellular matrix with important functions both during embryonic development and in normal physiology (Bishop et al. 2007; Bülow and Hobert 2006). They participate in the generation and maintenance of morphogen gradients and act as coreceptors for growth factors and cytokines. Heparin is a highly sulfated variant of HS present in the granules of connective tissue-type mast cells. The mast cell proteoglycans have important roles in the storage of bioactive monoamines as well as mast cell-specific proteases (Rönnberg et al. 2012). Both heparin and HS exert their functions through interactions with proteins, where the sulfation pattern of the polysaccharides determines the nature of the interaction (Lindahl and Li 2009). HS and heparin chains attached to proteoglycan core proteins are synthesized in the Golgi compartment of cells, where modification (sulfation and epimerization) occurs concomitantly with polymerization (Carlsson and Kjellen 2012; Esko and Lindahl 2001). The unmodified polysaccharide consists of N-acetylglucosamine (GlcNAc) residues in alternating sequence with glucuronic acid (GlcA). The first modification is catalyzed by a bifunctional enzyme, glucosaminyl N-deacetylase/N-sulfotransferase (NDST), which replaces acetyl groups in GlcNAc residues with sulfate groups. After N-sulfation, further modifications involving epimerization of glucuronic acid to iduronic acid as well as O-sulfation at different positions take place. The NDST enzymes have a key role in designing the modification patterns, since the enzymes carrying out both epimerization and O-sulfation act predominantly in N-sulfated regions of the polysaccharide. Four mammalian NDST isoforms have been identified, while single orthologs are present in Drosophila melanogaster and Caenorhabditis elegans.


Mast Cell Heparan Sulfate Glucuronic Acid GlcNAc Residue Morphogen Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aikawa J, Esko JD (1999) Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family. J Biol Chem 274:2690–2695PubMedCrossRefGoogle Scholar
  2. Aikawa J, Grobe K, Tsujimoto M, Esko JD (2001) Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem 276:5876–5882PubMedCrossRefGoogle Scholar
  3. Baik JY, Wang CL, Yang B, Linhardt RJ, Sharfstein S (2012) Toward a bioengineered heparin: challenges and strategies for metabolic engineering of mammalian cells. Bioengineered 3:227–231PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bengtsson J, Eriksson I, Kjellen L (2003) Distinct effects on heparan sulfate structure by different active site mutations in NDST-1. Biochemistry 42:2110–2115PubMedCrossRefGoogle Scholar
  5. Berninsone P, Hirschberg CB (1998) Heparan sulfate/heparin N-deacetylase/N-sulfotransferase. The N-sulfotransferase activity domain is at the carboxyl half of the holoenzyme. J Biol Chem 273:25556–25559PubMedCrossRefGoogle Scholar
  6. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037PubMedCrossRefGoogle Scholar
  7. Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407PubMedCrossRefGoogle Scholar
  8. Bush KT, Crawford BE, Garner OB, Nigam KB, Esko JD, Nigam SK (2012) N-Sulfation of Heparan Sulfate regulates early branching events in the developing mammary gland. J Biol Chem 287:42064, in pressGoogle Scholar
  9. Carlsson P, Kjellen L (2012) Heparin biosynthesis. Handb Exp Pharmacol 207:23–41PubMedCrossRefGoogle Scholar
  10. Carlsson P, Presto J, Spillmann D, Lindahl U, Kjellen L (2008) Heparin/heparan sulfate biosynthesis: processive formation of N-sulfated domains. J Biol Chem 283:20008–20014PubMedCrossRefGoogle Scholar
  11. Dagälv A, Holmborn K, Kjellen L, Abrink M (2011) Lowered expression of heparan sulfate/heparin biosynthesis enzyme N-deacetylase/n-sulfotransferase 1 results in increased sulfation of mast cell heparin. J Biol Chem 286:44433–44440PubMedCrossRefGoogle Scholar
  12. Duncan MB, Liu M, Fox C, Liu J (2006) Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2. Biochem Biophys Res Commun 339:1232–1237PubMedCrossRefGoogle Scholar
  13. Eriksson I, Sandback D, Ek B, Lindahl U, Kjellen L (1994) cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase, an enzyme involved in the biosynthesis of heparin. J Biol Chem 269:10438–10443PubMedGoogle Scholar
  14. Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173PubMedCentralPubMedCrossRefGoogle Scholar
  15. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Ann Rev Biochem 71:435–471PubMedCrossRefGoogle Scholar
  16. Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G (2000) Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 467:7–11PubMedCrossRefGoogle Scholar
  17. Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellen L (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400:773–776PubMedCrossRefGoogle Scholar
  18. Forsberg M, Holmborn K, Kundu S, Dagalv A, Kjellen L, Forsberg-Nilsson K (2012) Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J Biol Chem 287:10853–10862PubMedCrossRefGoogle Scholar
  19. Garner OB, Yamaguchi Y, Esko JD, Videm V (2008) Small changes in lymphocyte development and activation in mice through tissue-specific alteration of heparan sulphate. Immunology 125:420–429PubMedCrossRefGoogle Scholar
  20. Hashimoto Y, Orellana A, Gil G, Hirschberg CB (1992) Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J Biol Chem 267:15744–15750PubMedGoogle Scholar
  21. Henningsson F, Ledin J, Lunderius C, Wilen M, Hellman L, Pejler G (2002) Altered storage of proteases in mast cells from mice lacking heparin: a possible role for heparin in carboxypeptidase A processing. Biol Chem 383:793–801PubMedCrossRefGoogle Scholar
  22. Holmborn K, Ledin J, Smeds E, Eriksson I, Kusche-Gullberg M, Kjellen L (2004) Heparan sulfate synthesized by mouse embryonic stem cells deficient in NDST1 and NDST2 is 6-O-sulfated but contains no N-sulfate groups. J Biol Chem 279:42355–42358PubMedCrossRefGoogle Scholar
  23. Humphries DE, Wong GW, Friend DS, Gurish MF, Qiu WT, Huang C, Sharpe AH, Stevens RL (1999) Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400:769–772PubMedCrossRefGoogle Scholar
  24. Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellen L, Claesson-Welsh L (2006) Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 10:625–634PubMedCrossRefGoogle Scholar
  25. Jansson L, Hook M, Wasteson A, Lindahl U (1975) Biosynthesis of heparin. Solubilization and partial characterization of N- and O-sulphotransferases. Biochem J 149:49–55PubMedGoogle Scholar
  26. Kakuta Y, Sueyoshi T, Negishi M, Pedersen LC (1999) Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/N-sulfotransferase 1. J Biol Chem 274:10673–10676PubMedCrossRefGoogle Scholar
  27. Kjellen L, Pettersson I, Unger E, Lindahl U (1992) Two enzymes in one: N-deacetylation and N-sulfation in heparin biosynthesis are catalyzed by the same protein. Adv Exp Med Biol 313:107–111PubMedCrossRefGoogle Scholar
  28. Kuberan B, Lech MZ, Beeler DL, Wu ZL, Rosenberg RD (2003) Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nat Biotechnol 21:1343–1346PubMedCrossRefGoogle Scholar
  29. Kusche-Gullberg M, Eriksson I, Pikas DS, Kjellen L (1998) Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. J Biol Chem 273:11902–11907PubMedCrossRefGoogle Scholar
  30. Lanner F, Lee KL, Sohl M, Holmborn K, Yang H, Wilbertz J, Poellinger L, Rossant J, Farnebo F (2010) Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells 28:191–200PubMedGoogle Scholar
  31. Le Jan S, Hayashi M, Kasza Z, Eriksson I, Bishop JR, Weibrecht I, Heldin J, Holmborn K, Jakobsson L, Soderberg O, Spillmann D, Esko JD, Claesson-Welsh L, Kjellen L, Kreuger J (2012) Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Art Thromb Vasc Biol 32:1255–1263CrossRefGoogle Scholar
  32. Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L, Spillmann D (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741PubMedCrossRefGoogle Scholar
  33. Ledin J, Ringvall M, Thuveson M, Eriksson I, Wilen M, Kusche-Gullberg M, Forsberg E, Kjellen L (2006) Enzymatically active N-deacetylase/N-sulfotransferase-2 is present in liver but does not contribute to heparan sulfate N-sulfation. J Biol Chem 281:35727–35734PubMedCrossRefGoogle Scholar
  34. Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159PubMedCrossRefGoogle Scholar
  35. Liu J, Moon AF, Sheng J, Pedersen LC (2012) Understanding the substrate specificity of the heparan sulfate sulfotransferases by an integrated biosynthetic and crystallographic approach. Curr Opin Struct Biol 22:550–557PubMedCentralPubMedCrossRefGoogle Scholar
  36. Navia JL, Riesenfeld J, Vann WF, Lindahl U, Roden L (1983) Assay of N-acetylheparosan deacetylase with a capsular polysaccharide from Escherichia coli K5 as substrate. Anal Biochem 135:134–140PubMedCrossRefGoogle Scholar
  37. Orellana A, Hirschberg CB, Wei Z, Swiedler SJ, Ishihara M (1994) Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem 269:2270–2276PubMedGoogle Scholar
  38. Pallerla SR, Lawrence R, Lewejohann L, Pan Y, Fischer T, Schlomann U, Zhang X, Esko JD, Grobe K (2008) Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem 283:16885–16894PubMedCrossRefGoogle Scholar
  39. Pan Y, Carbe C, Powers A, Zhang EE, Esko JD, Grobe K, Feng GS, Zhang X (2008) Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction. Development 135:301–310PubMedCrossRefGoogle Scholar
  40. Pettersson I, Kusche M, Unger E, Wlad H, Nylund L, Lindahl U, Kjellen L (1991) Biosynthesis of heparin. Purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. J Biol Chem 266:8044–8049PubMedGoogle Scholar
  41. Pikas DS, Eriksson I, Kjellen L (2000) Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns. Biochemistry 39:4552–4558PubMedCrossRefGoogle Scholar
  42. Presto J, Thuveson M, Carlsson P, Busse M, Wilen M, Eriksson I, Kusche-Gullberg M, Kjellen L (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci USA 105:4751–4756PubMedCrossRefGoogle Scholar
  43. Qu X, Hertzler K, Pan Y, Grobe K, Robinson ML, Zhang X (2011) Genetic epistasis between heparan sulfate and FGF-Ras signaling controls lens development. Dev Biol 355:12–20PubMedCentralPubMedCrossRefGoogle Scholar
  44. Qu X, Pan Y, Carbe C, Powers A, Grobe K, Zhang X (2012) Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development. Development 139:2730–2739PubMedCrossRefGoogle Scholar
  45. Riesenfeld J, Hook M, Lindahl U (1980) Biosynthesis of heparin. Assay and properties of the microsomal N-acetyl-D-glucosaminyl N-deacetylase. J Biol Chem 255:922–928PubMedGoogle Scholar
  46. Ringvall M, Kjellen L (2010) Mice deficient in heparan sulfate N-deacetylase/N-sulfotransferase 1. Prog Mol Biol Transl Sci 93:35–58PubMedCrossRefGoogle Scholar
  47. Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L, Forsberg E (2000) Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 275:25926–25930PubMedCrossRefGoogle Scholar
  48. Rönnberg E, Melo FR, Pejler G (2012) Mast cell proteoglycans. J Histochem Cytochem 60:950, in pressGoogle Scholar
  49. Samoszuk M, Corwin M, Yu H, Wang J, Nalcioglu O, Su MY (2003) Inhibition of thrombosis in melanoma allografts in mice by endogenous mast cell heparin. Thromb Haemost 90:351–360PubMedGoogle Scholar
  50. Sheng J, Liu R, Xu Y, Liu J (2011) The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J Biol Chem 286:19768–19776PubMedCrossRefGoogle Scholar
  51. Toma L, Berninsone P, Hirschberg CB (1998) The putative heparin-specific N-acetylglucosaminyl N-Deacetylase/N-sulfotransferase also occurs in non-heparin-producing cells. J Biol Chem 273:22458–22465PubMedCrossRefGoogle Scholar
  52. van den Born J, Pikas DS, Pisa BJ, Eriksson I, Kjellen L, Berden JH (2003) Antibody-based assay for N-deacetylase activity of heparan sulfate/heparin N-deacetylase/N-sulfotransferase (NDST): novel characteristics of NDST-1 and -2. Glycobiology 13:1–10PubMedCrossRefGoogle Scholar
  53. Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910PubMedCrossRefGoogle Scholar
  54. Wei Z, Swiedler SJ (1999) Functional analysis of conserved cysteines in heparan sulfate N-deacetylase-N-sulfotransferases. J Biol Chem 274:1966–1970PubMedCrossRefGoogle Scholar
  55. Wei Z, Swiedler SJ, Ishihara M, Orellana A, Hirschberg CB (1993) A single protein catalyzes both N-deacetylation and N-sulfation during the biosynthesis of heparan sulfate. Proc Natl Acad Sci USA 90:3885–3888PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Medical Biochemistry and MicrobiologyUppsala University, BMCUppsalaSweden

Personalised recommendations