Skip to main content

N-Deacetylase/N-Sulfotransferase (Heparan Glucosaminyl) 2 (NDST2)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes
  • 261 Accesses

Abstract

Heparan sulfate (HS) proteoglycans are present at cell surfaces and in the extracellular matrix with important functions both during embryonic development and in normal physiology (Bishop et al. 2007; Bülow and Hobert 2006). They participate in the generation and maintenance of morphogen gradients and act as coreceptors for growth factors and cytokines. Heparin is a highly sulfated variant of HS present in the granules of connective tissue-type mast cells. The mast cell proteoglycans have important roles in the storage of bioactive monoamines as well as mast cell-specific proteases (Rönnberg et al. 2012). Both heparin and HS exert their functions through interactions with proteins, where the sulfation pattern of the polysaccharides determines the nature of the interaction (Lindahl and Li 2009). HS and heparin chains attached to proteoglycan core proteins are synthesized in the Golgi compartment of cells, where modification (sulfation and epimerization) occurs concomitantly with polymerization (Carlsson and Kjellen 2012; Esko and Lindahl 2001). The unmodified polysaccharide consists of N-acetylglucosamine (GlcNAc) residues in alternating sequence with glucuronic acid (GlcA). The first modification is catalyzed by a bifunctional enzyme, glucosaminyl N-deacetylase/N-sulfotransferase (NDST), which replaces acetyl groups in GlcNAc residues with sulfate groups. After N-sulfation, further modifications involving epimerization of glucuronic acid to iduronic acid as well as O-sulfation at different positions take place. The NDST enzymes have a key role in designing the modification patterns, since the enzymes carrying out both epimerization and O-sulfation act predominantly in N-sulfated regions of the polysaccharide. Four mammalian NDST isoforms have been identified, while single orthologs are present in Drosophila melanogaster and Caenorhabditis elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikawa J, Esko JD (1999) Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family. J Biol Chem 274:2690–2695

    Article  CAS  PubMed  Google Scholar 

  • Aikawa J, Grobe K, Tsujimoto M, Esko JD (2001) Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem 276:5876–5882

    Article  CAS  PubMed  Google Scholar 

  • Baik JY, Wang CL, Yang B, Linhardt RJ, Sharfstein S (2012) Toward a bioengineered heparin: challenges and strategies for metabolic engineering of mammalian cells. Bioengineered 3:227–231

    Article  PubMed Central  PubMed  Google Scholar 

  • Bengtsson J, Eriksson I, Kjellen L (2003) Distinct effects on heparan sulfate structure by different active site mutations in NDST-1. Biochemistry 42:2110–2115

    Article  CAS  PubMed  Google Scholar 

  • Berninsone P, Hirschberg CB (1998) Heparan sulfate/heparin N-deacetylase/N-sulfotransferase. The N-sulfotransferase activity domain is at the carboxyl half of the holoenzyme. J Biol Chem 273:25556–25559

    Article  CAS  PubMed  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407

    Article  PubMed  Google Scholar 

  • Bush KT, Crawford BE, Garner OB, Nigam KB, Esko JD, Nigam SK (2012) N-Sulfation of Heparan Sulfate regulates early branching events in the developing mammary gland. J Biol Chem 287:42064, in press

    Google Scholar 

  • Carlsson P, Kjellen L (2012) Heparin biosynthesis. Handb Exp Pharmacol 207:23–41

    Article  CAS  PubMed  Google Scholar 

  • Carlsson P, Presto J, Spillmann D, Lindahl U, Kjellen L (2008) Heparin/heparan sulfate biosynthesis: processive formation of N-sulfated domains. J Biol Chem 283:20008–20014

    Article  CAS  PubMed  Google Scholar 

  • Dagälv A, Holmborn K, Kjellen L, Abrink M (2011) Lowered expression of heparan sulfate/heparin biosynthesis enzyme N-deacetylase/n-sulfotransferase 1 results in increased sulfation of mast cell heparin. J Biol Chem 286:44433–44440

    Article  PubMed  Google Scholar 

  • Duncan MB, Liu M, Fox C, Liu J (2006) Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2. Biochem Biophys Res Commun 339:1232–1237

    Article  CAS  PubMed  Google Scholar 

  • Eriksson I, Sandback D, Ek B, Lindahl U, Kjellen L (1994) cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase, an enzyme involved in the biosynthesis of heparin. J Biol Chem 269:10438–10443

    CAS  PubMed  Google Scholar 

  • Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Ann Rev Biochem 71:435–471

    Article  CAS  PubMed  Google Scholar 

  • Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G (2000) Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 467:7–11

    Article  CAS  PubMed  Google Scholar 

  • Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellen L (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400:773–776

    Article  CAS  PubMed  Google Scholar 

  • Forsberg M, Holmborn K, Kundu S, Dagalv A, Kjellen L, Forsberg-Nilsson K (2012) Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J Biol Chem 287:10853–10862

    Article  CAS  PubMed  Google Scholar 

  • Garner OB, Yamaguchi Y, Esko JD, Videm V (2008) Small changes in lymphocyte development and activation in mice through tissue-specific alteration of heparan sulphate. Immunology 125:420–429

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Orellana A, Gil G, Hirschberg CB (1992) Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J Biol Chem 267:15744–15750

    CAS  PubMed  Google Scholar 

  • Henningsson F, Ledin J, Lunderius C, Wilen M, Hellman L, Pejler G (2002) Altered storage of proteases in mast cells from mice lacking heparin: a possible role for heparin in carboxypeptidase A processing. Biol Chem 383:793–801

    Article  CAS  PubMed  Google Scholar 

  • Holmborn K, Ledin J, Smeds E, Eriksson I, Kusche-Gullberg M, Kjellen L (2004) Heparan sulfate synthesized by mouse embryonic stem cells deficient in NDST1 and NDST2 is 6-O-sulfated but contains no N-sulfate groups. J Biol Chem 279:42355–42358

    Article  CAS  PubMed  Google Scholar 

  • Humphries DE, Wong GW, Friend DS, Gurish MF, Qiu WT, Huang C, Sharpe AH, Stevens RL (1999) Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400:769–772

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellen L, Claesson-Welsh L (2006) Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 10:625–634

    Article  CAS  PubMed  Google Scholar 

  • Jansson L, Hook M, Wasteson A, Lindahl U (1975) Biosynthesis of heparin. Solubilization and partial characterization of N- and O-sulphotransferases. Biochem J 149:49–55

    CAS  PubMed  Google Scholar 

  • Kakuta Y, Sueyoshi T, Negishi M, Pedersen LC (1999) Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/N-sulfotransferase 1. J Biol Chem 274:10673–10676

    Article  CAS  PubMed  Google Scholar 

  • Kjellen L, Pettersson I, Unger E, Lindahl U (1992) Two enzymes in one: N-deacetylation and N-sulfation in heparin biosynthesis are catalyzed by the same protein. Adv Exp Med Biol 313:107–111

    Article  CAS  PubMed  Google Scholar 

  • Kuberan B, Lech MZ, Beeler DL, Wu ZL, Rosenberg RD (2003) Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nat Biotechnol 21:1343–1346

    Article  CAS  PubMed  Google Scholar 

  • Kusche-Gullberg M, Eriksson I, Pikas DS, Kjellen L (1998) Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. J Biol Chem 273:11902–11907

    Article  CAS  PubMed  Google Scholar 

  • Lanner F, Lee KL, Sohl M, Holmborn K, Yang H, Wilbertz J, Poellinger L, Rossant J, Farnebo F (2010) Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells 28:191–200

    CAS  PubMed  Google Scholar 

  • Le Jan S, Hayashi M, Kasza Z, Eriksson I, Bishop JR, Weibrecht I, Heldin J, Holmborn K, Jakobsson L, Soderberg O, Spillmann D, Esko JD, Claesson-Welsh L, Kjellen L, Kreuger J (2012) Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Art Thromb Vasc Biol 32:1255–1263

    Article  Google Scholar 

  • Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L, Spillmann D (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741

    Article  CAS  PubMed  Google Scholar 

  • Ledin J, Ringvall M, Thuveson M, Eriksson I, Wilen M, Kusche-Gullberg M, Forsberg E, Kjellen L (2006) Enzymatically active N-deacetylase/N-sulfotransferase-2 is present in liver but does not contribute to heparan sulfate N-sulfation. J Biol Chem 281:35727–35734

    Article  CAS  PubMed  Google Scholar 

  • Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159

    Article  PubMed  Google Scholar 

  • Liu J, Moon AF, Sheng J, Pedersen LC (2012) Understanding the substrate specificity of the heparan sulfate sulfotransferases by an integrated biosynthetic and crystallographic approach. Curr Opin Struct Biol 22:550–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navia JL, Riesenfeld J, Vann WF, Lindahl U, Roden L (1983) Assay of N-acetylheparosan deacetylase with a capsular polysaccharide from Escherichia coli K5 as substrate. Anal Biochem 135:134–140

    Article  CAS  PubMed  Google Scholar 

  • Orellana A, Hirschberg CB, Wei Z, Swiedler SJ, Ishihara M (1994) Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem 269:2270–2276

    CAS  PubMed  Google Scholar 

  • Pallerla SR, Lawrence R, Lewejohann L, Pan Y, Fischer T, Schlomann U, Zhang X, Esko JD, Grobe K (2008) Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem 283:16885–16894

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Carbe C, Powers A, Zhang EE, Esko JD, Grobe K, Feng GS, Zhang X (2008) Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction. Development 135:301–310

    Article  CAS  PubMed  Google Scholar 

  • Pettersson I, Kusche M, Unger E, Wlad H, Nylund L, Lindahl U, Kjellen L (1991) Biosynthesis of heparin. Purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. J Biol Chem 266:8044–8049

    CAS  PubMed  Google Scholar 

  • Pikas DS, Eriksson I, Kjellen L (2000) Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns. Biochemistry 39:4552–4558

    Article  CAS  PubMed  Google Scholar 

  • Presto J, Thuveson M, Carlsson P, Busse M, Wilen M, Eriksson I, Kusche-Gullberg M, Kjellen L (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci USA 105:4751–4756

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Hertzler K, Pan Y, Grobe K, Robinson ML, Zhang X (2011) Genetic epistasis between heparan sulfate and FGF-Ras signaling controls lens development. Dev Biol 355:12–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu X, Pan Y, Carbe C, Powers A, Grobe K, Zhang X (2012) Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development. Development 139:2730–2739

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld J, Hook M, Lindahl U (1980) Biosynthesis of heparin. Assay and properties of the microsomal N-acetyl-D-glucosaminyl N-deacetylase. J Biol Chem 255:922–928

    CAS  PubMed  Google Scholar 

  • Ringvall M, Kjellen L (2010) Mice deficient in heparan sulfate N-deacetylase/N-sulfotransferase 1. Prog Mol Biol Transl Sci 93:35–58

    Article  CAS  PubMed  Google Scholar 

  • Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L, Forsberg E (2000) Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 275:25926–25930

    Article  CAS  PubMed  Google Scholar 

  • Rönnberg E, Melo FR, Pejler G (2012) Mast cell proteoglycans. J Histochem Cytochem 60:950, in press

    Google Scholar 

  • Samoszuk M, Corwin M, Yu H, Wang J, Nalcioglu O, Su MY (2003) Inhibition of thrombosis in melanoma allografts in mice by endogenous mast cell heparin. Thromb Haemost 90:351–360

    CAS  PubMed  Google Scholar 

  • Sheng J, Liu R, Xu Y, Liu J (2011) The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J Biol Chem 286:19768–19776

    Article  CAS  PubMed  Google Scholar 

  • Toma L, Berninsone P, Hirschberg CB (1998) The putative heparin-specific N-acetylglucosaminyl N-Deacetylase/N-sulfotransferase also occurs in non-heparin-producing cells. J Biol Chem 273:22458–22465

    Article  CAS  PubMed  Google Scholar 

  • van den Born J, Pikas DS, Pisa BJ, Eriksson I, Kjellen L, Berden JH (2003) Antibody-based assay for N-deacetylase activity of heparan sulfate/heparin N-deacetylase/N-sulfotransferase (NDST): novel characteristics of NDST-1 and -2. Glycobiology 13:1–10

    Article  PubMed  Google Scholar 

  • Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Swiedler SJ (1999) Functional analysis of conserved cysteines in heparan sulfate N-deacetylase-N-sulfotransferases. J Biol Chem 274:1966–1970

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Swiedler SJ, Ishihara M, Orellana A, Hirschberg CB (1993) A single protein catalyzes both N-deacetylation and N-sulfation during the biosynthesis of heparan sulfate. Proc Natl Acad Sci USA 90:3885–3888

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Kjellén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Kjellén, L. (2014). N-Deacetylase/N-Sulfotransferase (Heparan Glucosaminyl) 2 (NDST2). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_76

Download citation

Publish with us

Policies and ethics