Exostoses (Multiple)-Like 1-3 (EXTL1-3)

  • Hiroshi Kitagawa
  • Satomi Nadanaka
Reference work entry


The exostosin (Ext) tumor suppressor genes Ext1 and Ext2 are associated with hereditary multiple exostoses (HME) and encode bifunctional glycosyltransferases that are essential for polymerization of heparan sulfate (HS) chains, and three subsequently identified Ext-like genes (EXTL1, EXTL2, and EXTL3) show striking sequence similarity to both Ext1 and Ext2 at the nucleotide and amino acid codon levels (Wise et al. 1997). All Ext genes encode type II transmembrane proteins with a short NH2-terminalcytoplasmic tail, and notably, the COOH-terminal catalytic domain of the Ext proteins is most highly conserved, suggesting a conserved function.


Heparan Sulfate Acceptor Substrate Hereditary Multiple Exostosis Heparan Sulfate Chain Chondroitin Sulfate Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acquatella-Tran Van Ba I, Marchal S, Francois F, Silhol M, Lleres C, Michel B, Benyamin Y, Verdier JM, Trousse F, Marcilhac A (2012) Regenerating islet-derived 1alpha (Reg-1 alpha) protein is new neuronal secreted factor that stimulates neurite outgrowth via exostosin tumor-like 3 (EXTL3) receptor. J Biol Chem 287:4726–4739PubMedCrossRefGoogle Scholar
  2. Arai T, Akiyama Y, Yamamura A, Hosoi T, Shibata T, Saitoh K, Okabe S, Yuasa Y (1998) Allelotype analysis of early colorectal cancers with lymph node metastasis. Int J Cancer 79:418–423PubMedCrossRefGoogle Scholar
  3. Arai T, Akiyama Y, Nagasaki H, Murase N, Okabe S, Ikeuchi T, Saito K, Iwai T, Yuasa Y (1999) EXTL3/EXTR1 alterations in colorectal cancer cell lines. Int J Oncol 15:915–919PubMedGoogle Scholar
  4. Breton C, Imberty A (1999) Structure/function studies of glycosyltransferases. Curr Opin Struct Biol 9:563–571PubMedCrossRefGoogle Scholar
  5. Busch C, Hofmann F, Selzer J, Munro S, Jeckel D, Aktories K (1998) A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem 273:19566–19572PubMedCrossRefGoogle Scholar
  6. Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, Kusche-Gullberg M (2007) Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem 282:32802–32810PubMedCrossRefGoogle Scholar
  7. Duchez S, Pascal V, Cogne N, Jayat-Vignoles C, Julien R, Cogne M (2011) Glycotranscriptome study reveals an enzymatic switch modulating glycosaminoglycan synthesis during B-cell development and activation. Eur J Immunol 41:3632–3644PubMedCrossRefGoogle Scholar
  8. Esko JD, Zhang L (1996) Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol 6:663–670PubMedCrossRefGoogle Scholar
  9. Fransson L (1987) Structure and function of cell-associated proteoglycans. Trends Biochem Sci 12:406–411CrossRefGoogle Scholar
  10. Fritz TA, Gabb MM, Wei G, Esko JD (1994) Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate. J Biol Chem 269:28809–28814PubMedGoogle Scholar
  11. Fritz TA, Agrawal PK, Esko JD, Krishna NR (1997) Partial purification and substrate specificity of heparan sulfate alpha-N-acetylglucosaminyltransferase I: synthesis, NMR spectroscopic characterization and in vitro assays of two aryl tetrasaccharides. Glycobiology 7:587–595PubMedCrossRefGoogle Scholar
  12. Gustafson CE, Wilson PJ, Lukeis R, Baker E, Woollatt E, Annab L, Hawke L, Barrett JC, Chenevix-Trench G (1996) Functional evidence for a colorectal cancer tumor suppressor gene at chromosome 8p22–23 by monochromosome transfer. Cancer Res 56:5238–5245PubMedGoogle Scholar
  13. Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131:1563–1575PubMedCrossRefGoogle Scholar
  14. Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner M (1995) Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet 56:1125–1131PubMedCentralPubMedGoogle Scholar
  15. Jiang Z, Michal JJ, Wu XL, Pan Z, MacNeil MD (2011) The heparan and heparin metabolism pathway is involved in regulation of fatty acid composition. Int J Biol Sci 7:659–663PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kaidonis X, Liaw WC, Roberts AD, Ly M, Anson D, Byers S (2010) Gene silencing of EXTL2 and EXTL3 as a substrate deprivation therapy for heparan sulphate storing mucopolysaccharidoses. Eur J Hum Genet 18:194–199PubMedCrossRefGoogle Scholar
  17. Karibe T, Fukui H, Sekikawa A, Shiratori K, Fujimori T (2008) EXTL3 promoter methylation down-regulates EXTL3 and heparan sulphate expression in mucinous colorectal cancers. J Pathol 216:32–42PubMedCrossRefGoogle Scholar
  18. Kim BT, Kitagawa H, Tamura J, Saito T, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc Natl Acad Sci U S A 98:7176–7181PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kim BT, Kitagawa H, Tamura Ji J, Kusche-Gullberg M, Lindahl U, Sugahara K (2002) Demonstration of a novel gene DEXT3 of Drosophila melanogaster as the essential N-acetylglucosamine transferase in the heparan sulfate biosynthesis: chain initiation and elongation. J Biol Chem 277:13659–13665PubMedCrossRefGoogle Scholar
  20. Kim BT, Kitagawa H, Tanaka J, Tamura J, Sugahara K (2003) In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction. J Biol Chem 278:41618–41623PubMedCrossRefGoogle Scholar
  21. Kitagawa H, Tanaka Y, Tsuchida K, Goto F, Ogawa T, Lidholt K, Lindahl U, Sugahara K (1995) N-acetylgalactosamine (GalNAc) transfer to the common carbohydrate-protein linkage region of sulfated glycosaminoglycans. Identification of UDP-GalNAc:chondro-oligosaccharide alpha-N-acetylgalactosaminyltransferase in fetal bovine serum. J Biol Chem 270:22190–22195PubMedCrossRefGoogle Scholar
  22. Kitagawa H, Ujikawa M, Tsutsumi K, Tamura J, Neumann KW, Ogawa T, Sugahara K (1997) Characterization of serum beta-glucuronyltransferase involved in chondroitin sulfate biosynthesis. Glycobiology 7:905–911PubMedCrossRefGoogle Scholar
  23. Kitagawa H, Kano Y, Shimakawa H, Goto F, Ogawa T, Okabe H, Sugahara K (1999a) Identification and characterization of a novel UDP-GalNAc: GlcAbeta-R alpha1,4-N-acetylgalactosaminyltransferase from a human sarcoma cell line. Glycobiology 9:697–703PubMedCrossRefGoogle Scholar
  24. Kitagawa H, Shimakawa H, Sugahara K (1999b) The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J Biol Chem 274:13933–13937PubMedCrossRefGoogle Scholar
  25. Kitagawa H, Egusa N, Tamura JI, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J Biol Chem 276:4834–4838PubMedCrossRefGoogle Scholar
  26. Kobayashi S, Akiyama T, Nata K, Abe M, Tajima M, Shervani NJ, Unno M, Matsuno S, Sasaki H, Takasawa S, Okamoto H (2000a) Identification of a receptor for reg (regenerating gene) protein, a pancreatic beta-cell regeneration factor. J Biol Chem 275:10723–10726PubMedCrossRefGoogle Scholar
  27. Kobayashi S, Morimoto K, Shimizu T, Takahashi M, Kurosawa H, Shirasawa T (2000b) Association of EXT1 and EXT2, hereditary multiple exostoses gene products, in golgi apparatus. Biochem Biophys Res Commun 268:860–867PubMedCrossRefGoogle Scholar
  28. Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, Jiang Z, Li Z, Lei H, Quan Y, Zhang T, Wu Y, Kotol P, Morizane S, Hata TR, Iwatsuki K, Tang C, Gallo RL (2012) The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37:74–84PubMedCrossRefGoogle Scholar
  29. Levetan CS, Upham LV, Deng S, Laury-Kleintop L, Kery V, Nolan R, Quinlan J, Torres C, El-Hajj RJ (2008) Discovery of a human peptide sequence signaling islet neogenesis. Endocr Pract 14:1075–1083PubMedCrossRefGoogle Scholar
  30. Li J, Rancour DM, Allende ML, Worth CA, Darling DS, Gilbert JB, Menon AK, Young WW Jr (2001) The DXD motif is required for GM2 synthase activity but is not critical for nucleotide binding. Glycobiology 11:217–229PubMedCrossRefGoogle Scholar
  31. Lidholt K, Weinke JL, Kiser CS, Lugemwa FN, Bame KJ, Cheifetz S, Massague J, Lindahl U, Esko JD (1992) A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A 89:2267–2271PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lidholt K, Fjelstad M, Lindahl U, Goto F, Ogawa T, Kitagawa H, Sugahara K (1997) Assessment of glycosaminoglycan-protein linkage tetrasaccharides as acceptors for GalNAc- and GlcNAc-transferases from mouse mastocytoma. Glycoconj J 14:737–742PubMedCrossRefGoogle Scholar
  33. Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311PubMedCrossRefGoogle Scholar
  34. Lind T, Lindahl U, Lidholt K (1993) Biosynthesis of heparin/heparan sulfate. Identification of a 70-kDa protein catalyzing both the D-glucuronosyl- and the N-acetyl-D-glucosaminyltransferase reactions. J Biol Chem 268:20705–20708PubMedGoogle Scholar
  35. Mantelli F, Schaffer L, Dana R, Head SR, Argueso P (2009) Glycogene expression in conjunctiva of patients with dry eye: downregulation of notch signaling. Invest Ophthalmol Vis Sci 50:2666–2672PubMedCentralPubMedCrossRefGoogle Scholar
  36. Manzi A, Salimath PV, Spiro RC, Keifer PA, Freeze HH (1995) Identification of a novel glycosaminoglycan core-like molecule. I. 500 MHz 1H NMR analysis using a nano-NMR probe indicates the presence of a terminal alpha-GalNAc residue capping 4-methylumbelliferyl-beta-D-xylosides. J Biol Chem 270:9154–9163PubMedCrossRefGoogle Scholar
  37. Marchal S, Givalois L, Verdier JM, Mestre-Frances N (2012) Distribution of lithostathine in the mouse lemur brain with aging and alzheimer’s-like pathology. Neurobiol Aging 33(431):e15–e25PubMedGoogle Scholar
  38. Mathysen D, Van Roy N, Van Hul W, Laureys G, Ambros P, Speleman F, Wuyts W (2004) Molecular analysis of the putative tumour-suppressor gene EXTL1 in neuroblastoma patients and cell lines. Eur J Cancer 40:1255–1261PubMedCrossRefGoogle Scholar
  39. McCormick C, Duncan G, Goutsos KT, Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci U S A 97:668–673PubMedCentralPubMedCrossRefGoogle Scholar
  40. Miura Y, Freeze HH (1998) alpha-N-acetylgalactosamine-capping of chondroitin sulfate core region oligosaccharides primed on xylosides. Glycobiology 8:813–819PubMedCrossRefGoogle Scholar
  41. Miura Y, Ding Y, Manzi A, Hindsgaul O, Freeze HH (1999) Characterization of mammalian UDP-GalNAc:glucuronide alpha 1–4-N-acetylgalactosaminyltransferase. Glycobiology 9:1053–1060PubMedCrossRefGoogle Scholar
  42. Mizuno K, Irie S, Sato TA (2001) Overexpression of EXTL3/EXTR1 enhances NF-kappaB activity induced by TNF-alpha. Cell Sig 13:125–130CrossRefGoogle Scholar
  43. Muller B, Prante C, Gastens M, Kuhn J, Kleesiek K, Gotting C (2008) Increased levels of xylosyltransferase I correlate with the mineralization of the extracellular matrix during osteogenic differentiation of mesenchymal stem cells. Matrix Biol 27:139–149PubMedCrossRefGoogle Scholar
  44. Munro S, Freeman M (2000) The notch signalling regulator fringe acts in the golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr Biol 10:813–820PubMedCrossRefGoogle Scholar
  45. Nadanaka S, Kitagawa H (2008) Heparan sulphate biosynthesis and disease. J Biochem 144:7–14PubMedCrossRefGoogle Scholar
  46. Nadanaka S, Zhou S, Kagiyama S, Shoji N, Sugahara K, Sugihara K, Asano M, Kitagawa H (2013) EXTL2, a member of the EXT family of tumor suppressors, controls glycosaminoglycan biosynthesis in a xylose kinase-dependent manner. J Biol Chem 288:9321–9333PubMedCrossRefGoogle Scholar
  47. Nadanaka S, Kitagawa H, Sugahara K (1998) Demonstration of the immature glycosaminoglycan tetrasaccharide sequence GlcAbeta1-3Galbeta1–3Galbeta1–4Xyl on recombinant soluble human alpha-thrombomodulin. An oligosaccharide structure on a “part-time” proteoglycan. J Biol Chem 273:33728–33734PubMedCrossRefGoogle Scholar
  48. Negishi M, Dong J, Darden TA, Pedersen LG, Pedersen LC (2003) Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Biochem Biophys Res Commun 303:393–398PubMedCrossRefGoogle Scholar
  49. Okada M, Nadanaka S, Shoji N, Tamura J, Kitagawa H (2010) Biosynthesis of heparan sulfate in EXT1-deficient cells. Biochem J 428:463–471PubMedCrossRefGoogle Scholar
  50. Osman NM, Kagohashi Y, Udagawa J, Otani H (2003) Alpha1,4-N-acetylglucosaminyltransferase encoding gene EXTL3 expression pattern in mouse adult and developing tissues with special attention to the pancreas. Anat Embryol (Berl) 207:333–341CrossRefGoogle Scholar
  51. Osman NM, Naora H, Otani H (2004) Glycosyltransferase encoding gene EXTL3 is differentially expressed in the developing and adult mouse cerebral cortex. Brain Res Dev Brain Res 151:111–117PubMedCrossRefGoogle Scholar
  52. Pedersen LC, Tsuchida K, Kitagawa H, Sugahara K, Darden TA, Negishi M (2000) Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J Biol Chem 275:34580–34585PubMedCrossRefGoogle Scholar
  53. Raskind WH, Conrad EU, Chansky H, Matsushita M (1995) Loss of heterozygosity in chondrosarcomas for markers linked to hereditary multiple exostoses loci on chromosomes 8 and 11. Am J Hum Genet 56:1132–1139PubMedCentralPubMedGoogle Scholar
  54. Saito T, Seki N, Yamauchi M, Tsuji S, Hayashi A, Kozuma S, Hori T (1998) Structure, chromosomal location, and expression profile of EXTR1 and EXTR2, new members of the multiple exostoses gene family. Biochem Biophys Res Commun 243:61–66PubMedCrossRefGoogle Scholar
  55. Salimath PV, Spiro RC, Freeze HH (1995) Identification of a novel glycosaminoglycan core-like molecule. II. Alpha-GalNAc-capped xylosides can be made by many cell types. J Biol Chem 270:9164–9168PubMedCrossRefGoogle Scholar
  56. Senay C, Lind T, Muguruma K, Tone Y, Kitagawa H, Sugahara K, Lidholt K, Lindahl U, Kusche-Gullberg M (2000) The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep 1:282–286PubMedCentralPubMedCrossRefGoogle Scholar
  57. Sobhany M, Dong J, Negishi M (2005) Two-step mechanism that determines the donor binding specificity of human UDP-N-acetylhexosaminyltransferase. J Biol Chem 280:23441–23445PubMedCrossRefGoogle Scholar
  58. Stickens D, Brown D, Evans GA (2000) EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis. Dev Dyn 218:452–464PubMedCrossRefGoogle Scholar
  59. Stickens D, Zak BM, Rougier N, Esko JD, Werb Z (2005) Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 132:5055–5068PubMedCentralPubMedCrossRefGoogle Scholar
  60. Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10:518–527PubMedCrossRefGoogle Scholar
  61. Takahashi I, Noguchi N, Nata K, Yamada S, Kaneiwa T, Mizumoto S, Ikeda T, Sugihara K, Asano M, Yoshikawa T, Yamauchi A, Shervani NJ, Uruno A, Kato I, Unno M, Sugahara K, Takasawa S, Okamoto H, Sugawara A (2009) Important role of heparan sulfate in postnatal islet growth and insulin secretion. Biochem Biophys Res Commun 383:113–118PubMedCrossRefGoogle Scholar
  62. Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82PubMedCrossRefGoogle Scholar
  63. Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Konishi M, Oshimura M, Miyaki M (1996) Suppression of tumorigenicity and invasiveness of colon carcinoma cells by introduction of normal chromosome 8p12-pter. Oncogene 12:405–410PubMedGoogle Scholar
  64. Van Hul W, Bollerslev J, Gram J, Van Hul E, Wuyts W, Benichou O, Vanhoenacker F, Willems PJ (1997) Localization of a gene for autosomal dominant osteopetrosis (Albers-Schonberg disease) to chromosome 1p21. Am J Hum Genet 61:363–369PubMedCentralPubMedCrossRefGoogle Scholar
  65. Wiggins CA, Munro S (1998) Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci USA 95:7945–7950PubMedCentralPubMedCrossRefGoogle Scholar
  66. Wise CA, Clines GA, Massa H, Trask BJ, Lovett M (1997) Identification and localization of the gene for EXTL, a third member of the multiple exostoses gene family. Genome Res 7:10–16PubMedCrossRefGoogle Scholar
  67. Wuyts W, Van Hul W, Hendrickx J, Speleman F, Wauters J, De Boulle K, Van Roy N, Van Agtmael T, Bossuyt P, Willems PJ (1997) Identification and characterization of a novel member of the EXT gene family, EXTL2. Eur J Hum Genet 5:382–389PubMedGoogle Scholar
  68. Xu L, Xia J, Jiang H, Zhou J, Li H, Wang D, Pan Q, Long Z, Fan C, Deng HX (1999) Mutation analysis of hereditary multiple exostoses in the Chinese. Hum Genet 105:45–50PubMedCrossRefGoogle Scholar
  69. Zak BM, Crawford BE, Esko JD (2002) Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 1573:346–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of BiochemistryKobe Pharmaceutical UniversityHigashinada-kuJapan

Personalised recommendations