GPI Mannose Extension (PIGM, PIGV, PIGB, PIGZ)

  • Taroh Kinoshita
  • Norimitsu Inoue
Reference work entry


Glycosylphosphatidylinositol (GPI)-anchor is a major form of posttranslational modification that serves as a membrane anchor of many cell surface proteins. In human cells, more than 150 different proteins are GPI-anchored. The core backbone of the GPI-anchors contains three mannoses (Man1, Man2, and Man3), each linked in different bonds. In some cases, the fourth mannose (Man4) is added to Man3 as a side branch (Fig. 107.1) (Kinoshita et al. 2008). The structure of GPI-anchor bearing four mannoses is EtNP6(Man4α1-2)Man3α1-2(EtNP6)Man2α1-6(EtNP2)Man1α1-4GlcNα1-6(2-acyl)myo-inositol phospholipid (EtNP, ethanolaminephosphate; GlcN, glucosamine). All four mannoses are donated by dolichol-phosphate-mannose (Dol-P-Man). Four Dol-P-Man-dependent α-mannosyltransferases are therefore involved in biosynthesis of the GPI-anchors, i.e., GPI-Man transferase (GPI-MT)-I, GPI-MT-II, GPI-MT-III, and GPI-MT-IV for Man1, Man2, Man3, and Man4, respectively. All four enzymes are endoplasmic reticulum (ER)-resident membrane proteins belonging to a superfamily of glycosyltransferases that share several characteristics, such as the presence of multiple transmembrane domains (8–12) and the presence of catalytic (or putative catalytic) site in the luminal region between the first and the second transmembrane domains (Oriol et al. 2002; Liu and Mushegian 2003).


Chinese Hamster Ovary Cell Predict Transmembrane Domain Hepatic Vein Thrombosis Benzenesulfonyl Fluoride Hydrochloride Multiple Transmembrane Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almeida AM, Murakami Y, Layton DM et al (2006) Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat Med 12:846–851PubMedCrossRefGoogle Scholar
  2. Almeida AM, Murakami Y, Baker A et al (2007) Targeted therapy for inherited GPI deficiency. N Engl J Med 356:1641–1647PubMedCrossRefGoogle Scholar
  3. Ashida H, Hong Y, Murakami Y et al (2005) Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell 16:1439–1448PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brewis IA, Ferguson MA, Mehlert A, Turner AJ, Hooper NM (1995) Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem 270:22946–22956PubMedCrossRefGoogle Scholar
  5. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238PubMedCentralPubMedCrossRefGoogle Scholar
  6. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  7. Davydenko SG, Feng D, Jantti J, Keranen S (2005) Characterization of GPI14/YJR013w mutation that induces the cell wall integrity signalling pathway and results in increased protein production in Saccharomyces cerevisiae. Yeast 22:993–1009PubMedCrossRefGoogle Scholar
  8. Fabre AL, Orlean P, Taron CH (2005) Saccharomyces cerevisiae Ybr004c and its human homologue are required for addition of the second mannose during glycosylphosphatidylinositol precursor assembly. FEBS J 272:1160–1168PubMedCrossRefGoogle Scholar
  9. Ferguson MAJ, Kinoshita T, Hart GW (2009) Glycosylphosphatidylinositol anchors. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York, pp 143–161Google Scholar
  10. Fujita M, Kinoshita T (2012) GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821:1050–1058PubMedCrossRefGoogle Scholar
  11. Grimme SJ, Westfall BA, Wiedman JM, Taron CH, Orlean P (2001) The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J Biol Chem 276:27731–27739PubMedCrossRefGoogle Scholar
  12. Homans SW, Ferguson MA, Dwek RA, Rademacher TW, Anand R, Williams AF (1988) Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature 333:269–272PubMedCrossRefGoogle Scholar
  13. Hong Y, Maeda Y, Watanabe R, Inoue N, Ohishi K, Kinoshita T (2000) Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J Biol Chem 275:20911–20919PubMedCrossRefGoogle Scholar
  14. Hong Y, Maeda Y, Watanabe R, Ohishi K, Mishkind M, Riezman H, Kinoshita T (1999) PIG-N, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J Biol Chem 274:35099–35106PubMedCrossRefGoogle Scholar
  15. Horn D, Krawitz P, Mannhardt A, Korenke GC, Meinecke P (2011) Hyperphosphatasia-mental retardation syndrome due to PIGV mutations: expanded clinical spectrum. Am J Med Genet A 155A:1917–1922PubMedCrossRefGoogle Scholar
  16. Houjou T, Hayakawa J, Watanabe R, Tashima Y, Maeda Y, Kinoshita T, Taguchi R (2007) Changes in molecular species profiles of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis. J Lipid Res 48:1599–1606PubMedCrossRefGoogle Scholar
  17. Hyman R (1988) Somatic genetic analysis of the expression of cell surface molecules. Trends Genet 4:5–8PubMedCrossRefGoogle Scholar
  18. Irie K, Araki H, Oshima Y (1991) Mutations in a Saccharomyces cerevisiae host showing increased holding stability of the heterologous plasmid pSR1. Mol Gen Genet 225:257–265PubMedCrossRefGoogle Scholar
  19. Johnston JJ, Gropman AL, Sapp JC et al (2012) The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am J Hum Genet 90:295–300PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kang JY, Hong Y, Ashida H et al (2005) PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 280:9489–9497PubMedCrossRefGoogle Scholar
  21. Kim YU, Ashida H, Mori K, Maeda Y, Hong Y, Kinoshita T (2007) Both mammalian PIG-M and PIG-X are required for growth of GPI14-disrupted yeast. J Biochem 142:123–129PubMedCrossRefGoogle Scholar
  22. Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144:287–294PubMedCrossRefGoogle Scholar
  23. Krawitz PM, Schweiger MR, Rodelsperger C et al (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829PubMedCrossRefGoogle Scholar
  24. Krawitz PM, Murakami Y, Hecht J et al (2012) Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 91:146–151PubMedCentralPubMedCrossRefGoogle Scholar
  25. Liu J, Mushegian A (2003) Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 12:1418–1431PubMedCrossRefGoogle Scholar
  26. Maeda Y, Kinoshita T (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50:411–424PubMedCrossRefGoogle Scholar
  27. Maeda Y, Watanabe R, Harris CL, Hong Y, Ohishi K, Kinoshita K, Kinoshita T (2001) PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J 20:250–261PubMedCrossRefGoogle Scholar
  28. Maeda Y, Tashima Y, Houjou T et al (2007) Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell 18:1497–1506PubMedCentralPubMedCrossRefGoogle Scholar
  29. Maydan G, Noyman I, Har-Zahav A et al (2011) Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. J Med Genet 48:383–389PubMedCrossRefGoogle Scholar
  30. Murakami Y, Kanzawa N, Saito K et al (2012) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287:6318–6325PubMedCrossRefGoogle Scholar
  31. Ng BG, Hackmann K, Jones MA et al (2012) Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome. Am J Hum Genet 90:685–688PubMedCentralPubMedCrossRefGoogle Scholar
  32. Oriol R, Martinez-Duncker I, Chantret I, Mollicone R, Codogno P (2002) Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate. Mol Biol Evol 19:1451–1463PubMedCrossRefGoogle Scholar
  33. Puoti A, Conzelmann A (1993) Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H. J Biol Chem 268:7215–7224PubMedGoogle Scholar
  34. Sato K, Noda Y, Yoda K (2007) Pga1 is an essential component of glycosylphosphatidylinositol-mannosyltransferase II of Saccharomyces cerevisiae. Mol Biol Cell 18:3472–3485PubMedCentralPubMedCrossRefGoogle Scholar
  35. Schneiter R, Brugger B, Sandhoff R et al (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146:741–754PubMedCrossRefGoogle Scholar
  36. Smith TK, Cottaz S, Brimacombe JS, Ferguson MA (1996) Substrate specificity of the dolichol phosphate mannose: glucosaminyl phosphatidylinositol a1-4-mannosyltransferase of the glycosylphosphatidylinositol biosynthetic pathway of African trypanosomes. J Biol Chem 271:6476–6482PubMedCrossRefGoogle Scholar
  37. Sugiyama E, DeGasperi R, Urakaze M et al (1991) Identification of defects in glycosylphosphatidylinositol anchor biosynthesis in the Thy-1 expression mutants. J Biol Chem 266:12119–12122PubMedGoogle Scholar
  38. Sutterlin C, Horvath A, Gerold P, Schwarz RT, Wang Y, Dreyfuss M, Riezman H (1997) Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis. EMBO J 16:6374–6383PubMedCrossRefGoogle Scholar
  39. Sutterlin C, Escribano MV, Gerold P et al (1998) Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. Biochem J 332:153–159PubMedGoogle Scholar
  40. Taguchi R, Hamakawa N, Harada Nishida M, Fukui T, Nojima K, Ikezawa H (1994) Microheterogeneity in glycosylphosphatidylinositol anchor structures of bovine liver 5′-nucleotidase. Biochemistry 33:1017–1022PubMedCrossRefGoogle Scholar
  41. Takahashi M, Inoue N, Ohishi K et al (1996) PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J 15:4254–4261PubMedGoogle Scholar
  42. Taron BW, Colussi PA, Grimme JM, Orlean P, Taron CH (2004) Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J Biol Chem 279:36083–36092PubMedCrossRefGoogle Scholar
  43. Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, Maeda Y (2006) PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell 17:1410–1420PubMedCentralPubMedCrossRefGoogle Scholar
  44. Thompson MD, Roscioli T, Marcelis C et al (2011) Phenotypic variability in hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). Am J Med Genet A 158A:553–558CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of ImmunoregulationResearch Institute for Microbial Diseases, Osaka UniversitySuitaJapan
  2. 2.Department of Molecular GeneticsOsaka Medical Center for Cancer and Cardiovascular DiseasesOsakaJapan

Personalised recommendations