Glycosylphosphatidylinositol-N-Acetylglucosaminyltransferase (GPI-GlcNAc Transferase): A Complex Comprised of PIGA, PIGC, PIGH, PIGQ, PIGP, PIGY and DPM2

  • Taroh Kinoshita
  • Norimitsu Inoue
  • Yoshiko Murakami
Reference work entry


Glycosylphosphatidylinositols (GPIs) function as an anchor linking cell surface proteins to the plasma membrane in a wide range of eukaryotic organisms from yeast to mammals (Ferguson et al. 2009; Orlean and Menon 2007). In mammalian cells, many kinds of GPI-anchored proteins (GPI-APs) with various functions have been identified, including enzymes, ligands, receptors, adhesion molecules, complement regulators, and other immunological proteins (Ferguson et al. 2009). GPI-AP precursors possess a GPI-anchor attachment signal at the carboxyl-terminus. The GPI signal sequence is cleaved and replaced by a GPI preassembled in the endoplasmic reticulum (ER). The transfer of this GPI to proteins is essential for their expression on the cell surface. The core structure of GPIs is conserved in most eukaryotic organisms and is comprised of EtNP-6Manα1-2Manα1-6Manα1-4GlcNα1-6myo-Inositol-phospholipid (EtNP, ethanolamine phosphate; Man, mannose; GlcN, glucosamine) (Fig. 106.1a). The EtNP of the GPI core is amide-bonded to the carboxyl-terminus of GPI-APs. During GPI-anchor biosynthesis before transfer to the protein, the GPI core is additionally modified by a palmitate (or myristate in some cases) linked to the second position of the inositol moiety, with the EtNP side branches linked to the second position of the first mannose and the sixth position of the second mannose and with the fourth mannose linked to the third mannose via an a1-2 bond (Fig. 106.1a) (Kinoshita et al. 2008; Maeda and Kinoshita 2011). In mammalian nucleated cells, the palmitate chain of the inositol moiety is generally removed in the ER soon after the transfer of GPI to the protein (Tanaka et al. 2004). The first and second mannoses of the GPI core are also occasionally modified with various side branch sugars in the Golgi. In mammals, most free phosphatidylinositols (PIs) have diacyl fatty chains containing an unsaturated fatty acid at the sn2 position (primarily C18:0-C20:4), whereas the GPI-APs on the plasma membrane predominantly possess unique 1-alkyl-2-acyl fatty chains containing a saturated fatty acyl chain (usually stearic acid) at the sn2 position. The conversion of diacyl chains to 1-alkyl-2-acyl fatty chains occurs during GPI-anchor biosynthesis in the ER using an alkyl donor derived from the peroxisome (Maeda and Kinoshita 2011). The unsaturated fatty acyl chain at the sn-2 position is then remodeled to stearic acid by PGAP3 and PGAP2 in the Golgi (Maeda et al. 2007; Tashima et al. 2006).


Down Syndrome Paroxysmal Nocturnal Hemoglobinuria Paroxysmal Nocturnal Hemoglobinuria Patient Ethanolamine Phosphate Unsaturated Fatty Acyl Chain 


  1. Chen G, Ye Z, Yu X, Zou J, Mali P, Brodsky RA, Cheng L (2008) Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins. Cell Stem Cell 2:345–355. doi:10.1016/j.stem.2008.02.004PubMedCentralPubMedCrossRefGoogle Scholar
  2. Costello LC, Orlean P (1992) Inositol acylation of a potential glycosyl phosphoinositol anchor precursor from yeast requires acyl coenzyme A. J Biol Chem 267:8599–8603PubMedGoogle Scholar
  3. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  4. Doering TL, Masterson WJ, Englund PT, Hart GW (1989) Biosynthesis of the glycosyl phosphatidylinositol membrane anchor of the trypanosome variant surface glycoprotein. Origin of the non-acetylated glucosamine. J Biol Chem 264:11168–11173PubMedGoogle Scholar
  5. Ferguson MA (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112(Pt 17):2799–2809PubMedGoogle Scholar
  6. Ferguson MAJ, Kinoshita T, Hart GW (2009) Glycosylphosphatidylinositol anchors. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 143–161Google Scholar
  7. Ferrando-Miguel R, Cheon MS, Lubec G (2004) Protein levels of genes encoded on chromosome 21 in fetal Down Syndrome brain (Part V): overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5). Amino Acids 26:255–261. doi:10.1007/s00726-004-0065-9PubMedCrossRefGoogle Scholar
  8. Fujii T, Shimoi H, Iimura Y (1999) Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim Biophys Acta 1427:133–144. doi:S0304-4165(99)00012-4 [pii]PubMedCrossRefGoogle Scholar
  9. Hanaoka N, Kawaguchi T, Horikawa K, Nagakura S, Mitsuya H, Nakakuma H (2006) Immunoselection by natural killer cells of PIGA mutant cells missing stress-inducible ULBP. Blood 107:1184–1191. doi:10.1182/blood-2005-03-1337PubMedCrossRefGoogle Scholar
  10. Hanaoka N, Nakakuma H, Horikawa K, Nagakura S, Tsuzuki Y, Shimanuki M, Kojima K, Yonemura Y, Kawaguchi T (2009) NKG2D-mediated immunity underlying paroxysmal nocturnal haemoglobinuria and related bone marrow failure syndromes. Br J Haematol 146:538–545. doi:10.1111/j.1365-2141.2009.07795.xPubMedCrossRefGoogle Scholar
  11. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462. doi:10.1038/nrm1925PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hazenbos WL, Clausen BE, Takeda J, Kinoshita T (2004a) GPI-anchor deficiency in myeloid cells causes impaired FcgammaR effector functions. Blood 104:2825–2831. doi:10.1182/blood-2004-02-0671PubMedCrossRefGoogle Scholar
  13. Hazenbos WL, Murakami Y, Nishimura J, Takeda J, Kinoshita T (2004b) Enhanced responses of glycosylphosphatidylinositol anchor-deficient T lymphocytes. J Immunol 173:3810–3815PubMedGoogle Scholar
  14. Hazenbos WL, Wu P, Eastham-Anderson J, Kinoshita T, Brown EJ (2011) Impaired FcepsilonRI stability, signaling, and effector functions in murine mast cells lacking glycosylphosphatidylinositol-anchored proteins. Blood 118:4377–4383. doi:10.1182/blood-2011-02-338053PubMedCrossRefGoogle Scholar
  15. Hirose S, Ravi L, Hazra SV, Medof ME (1991) Assembly and deacetylation of N-acetylglucosaminyl-plasmanylinositol in normal and affected paroxysmal nocturnal hemoglobinuria cells. Proc Natl Acad Sci USA 88:3762–3766PubMedCrossRefGoogle Scholar
  16. Hong Y, Ohishi K, Watanabe R, Endo Y, Maeda Y, Kinoshita T (1999) GPI1 stabilizes an enzyme essential in the first step of glycosylphosphatidylinositol biosynthesis. J Biol Chem 274:18582–18588PubMedCrossRefGoogle Scholar
  17. Houjou T, Hayakawa J, Watanabe R, Tashima Y, Maeda Y, Kinoshita T, Taguchi R (2007) Changes in molecular species profiles of glycosylphosphatidylinositol anchor precursors in early stages of biosynthesis. J Lipid Res 48:1599–1606. doi:10.1194/jlr.M700095-JLR200PubMedCrossRefGoogle Scholar
  18. Hyman R (1988) Somatic genetic analysis of the expression of cell surface molecules. Trends Genet 4:5–8PubMedCrossRefGoogle Scholar
  19. Inoue N, Watanabe R, Takeda J, Kinoshita T (1996) PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem Biophys Res Commun 226:193–199. doi:10.1006/bbrc.1996.1332PubMedCrossRefGoogle Scholar
  20. Inoue N, Izui-Sarumaru T, Murakami Y, Endo Y, Nishimura J, Kurokawa K, Kuwayama M, Shime H, Machii T, Kanakura Y, Meyers G, Wittwer C, Chen Z, Babcock W, Frei-Lahr D, Parker CJ, Kinoshita T (2006) Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood 108:4232–4236. doi:10.1182/blood-2006-05-025148PubMedCrossRefGoogle Scholar
  21. Johnston JJ, Gropman AL, Sapp JC, Teer JK, Martin JM, Liu CF, Yuan X, Ye Z, Cheng L, Brodsky RA, Biesecker LG (2012) The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am J Hum Genet 90:295–300. doi:10.1016/j.ajhg.2011.11.031PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kamitani T, Chang HM, Rollins C, Waneck GL, Yeh ET (1993) Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk- cells by a human cDNA clone. J Biol Chem 268:20733–20736PubMedGoogle Scholar
  23. Kanzawa N, Maeda Y, Ogiso H, Murakami Y, Taguchi R, Kinoshita T (2009) Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc Natl Acad Sci USA 106:17711–17716. doi:10.1073/pnas.0904762106PubMedCrossRefGoogle Scholar
  24. Kawagoe K, Kitamura D, Okabe M, Taniuchi I, Ikawa M, Watanabe T, Kinoshita T, Takeda J (1996) Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood 87:3600–3606PubMedGoogle Scholar
  25. Keller P, Tremml G, Rosti V, Bessler M (1999) X inactivation and somatic cell selection rescue female mice carrying a Piga-null mutation. Proc Natl Acad Sci USA 96:7479–7483PubMedCrossRefGoogle Scholar
  26. Kinoshita T, Inoue N, Takeda J (1995) Defective glycosyl phosphatidylinositol anchor synthesis and paroxysmal nocturnal hemoglobinuria. Adv Immunol 60:57–103PubMedCrossRefGoogle Scholar
  27. Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144:287–294. doi:10.1093/jb/mvn090PubMedCrossRefGoogle Scholar
  28. Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, Isau M, Fischer A, Dahl A, Kerick M, Hecht J, Kohler S, Jager M, Grunhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S, Robinson PN (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829. doi:10.1038/ng.653PubMedCrossRefGoogle Scholar
  29. Krawitz PM, Murakami Y, Hecht J, Kruger U, Holder SE, Mortier GR, Delle Chiaie B, De Baere E, Thompson MD, Roscioli T, Kielbasa S, Kinoshita T, Mundlos S, Robinson PN, Horn D (2012) Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 91:146–151. doi:10.1016/j.ajhg.2012.05.004PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36:604–615. doi:10.1016/j.tibs.2011.08.001PubMedCrossRefGoogle Scholar
  31. Leidich SD, Orlean P (1996) Gpi1, a Saccharomyces cerevisiae protein that participates in the first step in glycosylphosphatidylinositol anchor synthesis. J Biol Chem 271:27829–27837PubMedCrossRefGoogle Scholar
  32. Leidich SD, Drapp DA, Orlean P (1994) A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J Biol Chem 269:10193–10196PubMedGoogle Scholar
  33. Leidich SD, Kostova Z, Latek RR, Costello LC, Drapp DA, Gray W, Fassler JS, Orlean P (1995) Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. J Biol Chem 270:13029–13035PubMedCrossRefGoogle Scholar
  34. Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740PubMedCentralPubMedGoogle Scholar
  35. Liu J, Mushegian A (2003) Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 12:1418–1431. doi:10.1110/ps.0302103PubMedCrossRefGoogle Scholar
  36. Maeda Y, Kinoshita T (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50:411–424. doi:10.1016/j.plipres.2011.05.002PubMedCrossRefGoogle Scholar
  37. Maeda Y, Tomita S, Watanabe R, Ohishi K, Kinoshita T (1998) DPM2 regulates biosynthesis of dolichol phosphate-mannose in mammalian cells: correct subcellular localization and stabilization of DPM1, and binding of dolichol phosphate. EMBO J 17:4920–4929. doi:10.1093/emboj/17.17.4920PubMedCrossRefGoogle Scholar
  38. Maeda Y, Tashima Y, Houjou T, Fujita M, Yoko-o T, Jigami Y, Taguchi R, Kinoshita T (2007) Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell 18:1497–1506. doi:10.1091/mbc.E06-10-0885PubMedCentralPubMedCrossRefGoogle Scholar
  39. Marmor MD, Bachmann MF, Ohashi PS, Malek TR, Julius M (1999) Immobilization of glycosylphosphatidylinositol-anchored proteins inhibits T cell growth but not function. Int Immunol 11:1381–1393PubMedCrossRefGoogle Scholar
  40. Masterson WJ, Doering TL, Hart GW, Englund PT (1989) A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Cell 56:793–800PubMedCrossRefGoogle Scholar
  41. Maydan G, Noyman I, Har-Zahav A, Neriah ZB, Pasmanik-Chor M, Yeheskel A, Albin-Kaplanski A, Maya I, Magal N, Birk E, Simon AJ, Halevy A, Rechavi G, Shohat M, Straussberg R, Basel-Vanagaite L (2011) Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. J Med Genet 48:383–389. doi:10.1136/jmg.2010.087114PubMedCrossRefGoogle Scholar
  42. Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, Maeda K, Kitani T, Kinoshita T (1993) The cloning of PIG-a, a component in the early step of GPI-anchor biosynthesis. Science 259:1318–1320PubMedCrossRefGoogle Scholar
  43. Murakami Y, Kinoshita T, Maeda Y, Nakano T, Kosaka H, Takeda J (1999) Different roles of glycosylphosphatidylinositol in various hematopoietic cells as revealed by a mouse model of paroxysmal nocturnal hemoglobinuria. Blood 94:2963–2970PubMedGoogle Scholar
  44. Murakami Y, Kosaka H, Maeda Y, Nishimura J, Inoue N, Ohishi K, Okabe M, Takeda J, Kinoshita T (2002) Inefficient response of T lymphocytes to glycosylphosphatidylinositol anchor-negative cells: implications for paroxysmal nocturnal hemoglobinuria. Blood 100:4116–4122. doi:10.1182/blood-2002-06-1669PubMedCrossRefGoogle Scholar
  45. Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T (2005) The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell 16:5236–5246. doi:10.1091/mbc.E05-08-0743PubMedCentralPubMedCrossRefGoogle Scholar
  46. Murakami Y, Inoue N, Shichishima T, Ohta R, Noji H, Maeda Y, Nishimura J, Kanakura Y, Kinoshita T (2012a) Deregulated expression of HMGA2 is implicated in clonal expansion of PIGA deficient cells in paroxysmal nocturnal haemoglobinuria. Br J Haematol 156:383–387. doi:10.1111/j.1365-2141.2011.08914.xPubMedCrossRefGoogle Scholar
  47. Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T (2012b) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287:6318–6325. doi:10.1074/jbc.M111.331090PubMedCrossRefGoogle Scholar
  48. Murata D, Nomura KH, Dejima K, Mizuguchi S, Kawasaki N, Matsuishi-Nakajima Y, Ito S, Gengyo-Ando K, Kage-Nakadai E, Mitani S, Nomura K (2012) GPI-anchor synthesis is indispensable for the germline development of the nematode Caenorhabditis elegans. Mol Biol Cell 23:982–995. doi:10.1091/mbc.E10-10-0855PubMedCentralPubMedCrossRefGoogle Scholar
  49. Newman HA, Romeo MJ, Lewis SE, Yan BC, Orlean P, Levin DE (2005) Gpi19, the Saccharomyces cerevisiae homologue of mammalian PIG-P, is a subunit of the initial enzyme for glycosylphosphatidylinositol anchor biosynthesis. Eukaryot Cell 4:1801–1807. doi:10.1128/EC.4.11.1801-1807.2005PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ng BG, Hackmann K, Jones MA, Eroshkin AM, He P, Wiliams R, Bhide S, Cantagrel V, Gleeson JG, Paller AS, Schnur RE, Tinschert S, Zunich J, Hegde MR, Freeze HH (2012) Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome. Am J Hum Genet 90:685–688. doi:10.1016/j.ajhg.2012.02.010PubMedCentralPubMedCrossRefGoogle Scholar
  51. Nozaki M, Ohishi K, Yamada N, Kinoshita T, Nagy A, Takeda J (1999) Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/loxP system. Lab Invest 79:293–299PubMedGoogle Scholar
  52. Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011PubMedCrossRefGoogle Scholar
  53. Schonbachler M, Horvath A, Fassler J, Riezman H (1995) The yeast spt14 gene is homologous to the human PIG-A gene and is required for GPI anchor synthesis. EMBO J 14:1637–1645PubMedGoogle Scholar
  54. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39. doi:10.1038/35036052PubMedCrossRefGoogle Scholar
  55. Sobering AK, Watanabe R, Romeo MJ, Yan BC, Specht CA, Orlean P, Riezman H, Levin DE (2004) Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER. Cell 117:637–648. doi:10.1016/j.cell.2004.05.003PubMedCrossRefGoogle Scholar
  56. Stevens VL, Raetz CR (1991) Defective glycosyl phosphatidylinositol biosynthesis in extracts of three Thy-1 negative lymphoma cell mutants. J Biol Chem 266:10039–10042PubMedGoogle Scholar
  57. Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, Fujita T, Takahashi M, Kitani T, Kinoshita T (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–711. doi:0092-8674(93)90250-T [pii]PubMedCrossRefGoogle Scholar
  58. Tanaka S, Maeda Y, Tashima Y, Kinoshita T (2004) Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 279:14256–14263. doi:10.1074/jbc.M313755200PubMedCrossRefGoogle Scholar
  59. Tarutani M, Itami S, Okabe M, Ikawa M, Tezuka T, Yoshikawa K, Kinoshita T, Takeda J (1997) Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc Natl Acad Sci USA 94:7400–7405PubMedCrossRefGoogle Scholar
  60. Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, Maeda Y (2006) PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell 17:1410–1420. doi:10.1091/mbc.E05-11-1005PubMedCentralPubMedCrossRefGoogle Scholar
  61. Togashi T, Choi DK, Taylor TD, Suzuki Y, Sugano S, Hattori M, Sakaki Y (2000) A novel gene, DSCR5, from the distal Down syndrome critical region on chromosome 21q22.2. DNA Res 7:207–212PubMedCrossRefGoogle Scholar
  62. Tremml G, Dominguez C, Rosti V, Zhang Z, Pandolfi PP, Keller P, Bessler M (1999) Increased sensitivity to complement and a decreased red blood cell life span in mice mosaic for a nonfunctional Piga gene. Blood 94:2945–2954PubMedGoogle Scholar
  63. Vossen JH, Ram AF, Klis FM (1995) Identification of SPT14/CWH6 as the yeast homologue of hPIG-A, a gene involved in the biosynthesis of GPI anchors. Biochim Biophys Acta 1243:549–551PubMedCrossRefGoogle Scholar
  64. Watanabe R, Kinoshita T, Masaki R, Yamamoto A, Takeda J, Inoue N (1996) PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J Biol Chem 271:26868–26875PubMedCrossRefGoogle Scholar
  65. Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T (1998) The first step of glycosylphosphatidylinositol biosynthesis is Mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J 17:877–885. doi:10.1093/emboj/17.4.877PubMedCrossRefGoogle Scholar
  66. Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, Kangawa K, Julius M, Kinoshita T (2000) Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J 19:4402–4411. doi:10.1093/emboj/19.16.4402PubMedCrossRefGoogle Scholar
  67. Yan BC, Westfall BA, Orlean P (2001) Ynl038wp (Gpi15p) is the Saccharomyces cerevisiae homologue of human Pig-Hp and participates in the first step in glycosylphosphatidylinositol assembly. Yeast 18:1383–1389. doi:10.1002/yea.783PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Taroh Kinoshita
    • 1
  • Norimitsu Inoue
    • 2
  • Yoshiko Murakami
    • 1
  1. 1.Department of Immunoregulation, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
  2. 2.Department of Molecular GeneticsOsaka Medical Center for Cancer and Cardiovascular DiseasesOsakaJapan

Personalised recommendations