Heparan Sulfate 2-O-Sulfotransferase (HS2ST)

Reference work entry


Backbone structure of heparan sulfate (HS) and heparin is composed of HexA-GlcNAc/GlcNSO3 repeating units, in which HexA is either d-GlcA or l-IdoA, linked to core proteins through a tetrasaccharide linkage sequence, GlcA-Gal-Gal-Xyl. Sulfate groups are present on the position 2 of the HexA, position 3 and 6 of the GlcNAc/GlcNSO3, and position 2 in the GlcNSO3. Heparan sulfate 2-O-sulfotransferase (HS2ST) transfers sulfate from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to position 2 of the IdoA and GlcA residue in HS and heparin.


Heparan Sulfate Lacrimal Gland Heparan Sulfate Chain Conditional Knockout Mouse Iduronic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279:12346–12354PubMedCrossRefGoogle Scholar
  2. Ashikari-Hada S, Habuchi H, Kariya Y, Kimata K (2005) Heparin regulates vascular endothelial growth factor165-dependent mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells. Comparison of the effects of heparin and modified heparins. J Biol Chem 280:31508–31515PubMedCrossRefGoogle Scholar
  3. Ashikari-Hada S, Habuchi H, Sugaya N, Kobayashi T, Kimata K (2009) Specific inhibition of FGF-2 signaling with 2-O-sulfated octasaccharides of heparan sulfate. Glycobiology 19:644–654PubMedCrossRefGoogle Scholar
  4. Axelsson J, Xu D, Kang BN, Nussbacher JK, Handel TM, Ley K, Sriramarao P, Esko JD (2012) Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 120:1742–1751PubMedCrossRefGoogle Scholar
  5. Bai X, Esko JD (1996) An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J Biol Chem 271:17711–17717PubMedCrossRefGoogle Scholar
  6. Bai X, Bame KJ, Habuchi H, Kimata K, Esko JD (1997) Turnover of heparan sulfate depends on 2-O-sulfation of uronic acids. J Biol Chem 272:23172–23179PubMedCrossRefGoogle Scholar
  7. Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRefGoogle Scholar
  8. Bethea HN, Xu D, Liu J, Pedersen LC (2008) Redirecting the substrate specificity of heparan sulfate 2-O-sulfotransferase by structurally guided mutagenesis. Proc Natl Acad Sci USA 105:18724–18729PubMedCrossRefGoogle Scholar
  9. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037PubMedCrossRefGoogle Scholar
  10. Bullock SL, Fletcher JM, Beddington RS, Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 12:1894–1906PubMedCrossRefGoogle Scholar
  11. Bülow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41:723–736PubMedCrossRefGoogle Scholar
  12. Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407PubMedCrossRefGoogle Scholar
  13. Conway CD, Howe KM, Nettleton NK, Price DJ, Mason JO, Pratt T (2011) Heparan sulfate sugar modifications mediate the functions of slits and other factors needed for mouse forebrain commissure development. J Neurosci 31:1955–1970PubMedCrossRefGoogle Scholar
  14. DiGabriele AD, Lax I, Chen DI, Svahn CM, Jaye M, Schlessinger J, Hendrickson WA (1998) Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 393:812–817PubMedCrossRefGoogle Scholar
  15. Fadel S, Eley A (2008) Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV. J Med Microbiol 57(Pt 9):1058–1061PubMedCrossRefGoogle Scholar
  16. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120PubMedCrossRefGoogle Scholar
  17. Guimond S, Maccarana M, Olwin BB, Lindahl U, Rapraeger AC (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem 268:23906–23914PubMedGoogle Scholar
  18. Habuchi H, Suzuki S, Saito T, Tamura T, Harada T, Yoshida K, Kimata K (1992) Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem J 285:805–813PubMedGoogle Scholar
  19. Habuchi H, Habuchi O, Kimata K (1995) Purification and characterization of heparan sulfate 6-sulfotransferase from the culture medium of Chinese hamster ovary cells. J Biol Chem 270:4172–4179PubMedCrossRefGoogle Scholar
  20. Habuchi H, Kobayashi M, Kimata K (1998) Molecular characterization and expression of heparan-sulfate 6-sulfotransferase. Complete cDNA cloning in human and partial cloning in Chinese hamster ovary cells. J Biol Chem 273:9208–9213PubMedCrossRefGoogle Scholar
  21. Habuchi H, Tanaka M, Habuchi O, Yoshida K, Suzuki H, Ban K, Kimata K (2000) The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J Biol Chem 275:2859–2868PubMedCrossRefGoogle Scholar
  22. Habuchi H, Habuchi O, Uchimura K, Kimata K, Muramatsu T (2006) Determination of substrate specificity of sulfotransferases and glycosyltransferases (proteoglycans). Methods Enzymol 416:225–243PubMedCrossRefGoogle Scholar
  23. Irie F, Badie-Mahdavi H, Yamaguchi Y (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci USA 109:5052–5056PubMedCrossRefGoogle Scholar
  24. Ishihara M, Takano R, Kanda T, Hayashi K, Hara S, Kikuchi H, Yoshida K (1995) Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. J Biochem 118:1255–1260PubMedGoogle Scholar
  25. Jastrebova N, Vanwildemeersch M, Rapraeger AC, Giménez-Gallego G, Lindahl U, Spillmann D (2006) Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J Biol Chem 281:26884–26892PubMedCrossRefGoogle Scholar
  26. Jones KS, Lambert S, Bouttier M, Bénit L, Ruscetti FW, Hermine O, Pique C (2011) Molecular aspects of HTLV-1 entry: functional domains of the HTLV-1 surface subunit (SU) and their relationships to the entry receptors. Viruses 3:794–810PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC (1997) Crystal structure of estrogen sulphotransferase. Nat Struct Biol 4:904–908PubMedCrossRefGoogle Scholar
  28. Kamimura K, Koyama T, Habuchi H, Ueda R, Masu M, Kimata K, Nakato H (2006) Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 174:773–778PubMedCrossRefGoogle Scholar
  29. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL (1993) An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 259:1918–1921PubMedCrossRefGoogle Scholar
  30. Kimata K, Habuchi O, Habuchi H, Watanabe H (2007) Knockout mice and proteoglycans in comprihensive glycoscience, vol 3. Elsevier, pp 119–159, Chapter 4.10Google Scholar
  31. Kinnunen T, Huang Z, Townsend J, Gatdula MM, Brown JR, Esko JD, Turnbull JE (2005) Heparan 2-O-sulfotransferase, hst-2, is essential for normal cell migration in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:1507–1512PubMedCrossRefGoogle Scholar
  32. Kobayashi M, Habuchi H, Habuchi O, Saito M, Kimata K (1996) Purification and characterization of heparan sulfate 2-sulfotransferase from cultured Chinese hamster ovary cells. J Biol Chem 271:7645–7653PubMedCrossRefGoogle Scholar
  33. Kobayashi M, Habuchi H, Yoneda M, Habuchi O, Kimata K (1997) Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase. J Biol Chem 272:13980–13985PubMedCrossRefGoogle Scholar
  34. Kobayashi T, Habuchi H, Tamura K, Ide H, Kimata K (2007) Essential role of heparan sulfate 2-O-sulfotransferase in chick limb bud patterning and development. J Biol Chem 282:19589–19597PubMedCrossRefGoogle Scholar
  35. Kolset SO, Pejler G (2011) Serglycin: a structural and functional chameleon with wide impact on immune cells. J Immunol 187:4927–4933PubMedCrossRefGoogle Scholar
  36. Lindahl B, Eriksson L, Lindahl U (1995) Structure of heparan sulphate from human brain, with special regard to Alzheimer’s disease. Biochem J 306:177–184PubMedGoogle Scholar
  37. MacArthur JM, Bishop JR, Stanford KI, Wang L, Bensadoun A, Witztum JL, Esko JD (2007) Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 117:153–164PubMedCentralPubMedCrossRefGoogle Scholar
  38. Maccarana M, Casu B, Lindahl U (1993) Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 268:23898–23905PubMedGoogle Scholar
  39. McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F (1998) The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 19:158–161PubMedCrossRefGoogle Scholar
  40. Melo FR, Grujic M, Spirkoski J, Calounova G, Pejler G (2012) Serglycin proteoglycan promotes apoptotic versus necrotic cell death in mast cells. J Biol Chem 287:18142–18152PubMedCrossRefGoogle Scholar
  41. Merry CL, Bullock SL, Swan DC, Backen AC, Lyon M, Beddington RS, Wilson VA, Gallagher JT (2001) The molecular phenotype of heparan sulfate in the Hs2st−/− mutant mouse. J Biol Chem 276:35429–35434PubMedCrossRefGoogle Scholar
  42. Merry CL, Wilson VA (2002) Role of heparan sulfate-2-O-sulfotransferase in the mouse. Biochim Biophys Acta 1573:319–327PubMedCrossRefGoogle Scholar
  43. Moon AF, Edavettal SC, Krahn JM, Munoz EM, Negishi M, Linhardt RJ, Liu J, Pedersen LC (2004) Structural analysis of the sulfotransferase (3-O-sulfotransferase isoform 3) involved in the biosynthesis of an entry receptor for herpes simplex virus 1. J Biol Chem 279:45185–45193PubMedCrossRefGoogle Scholar
  44. Nogami K, Suzuki H, Habuchi H, Ishiguro N, Iwata H, Kimata K (2004) Distinctive expression patterns of heparan sulfate O-sulfotransferases and regional differences in heparan sulfate structure in chick limb buds. J Biol Chem 279:8219–8229PubMedCrossRefGoogle Scholar
  45. Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728PubMedCrossRefGoogle Scholar
  46. Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M (1999) Structural basis for FGF receptor dimerization and activation. Cell 98:641–650PubMedCrossRefGoogle Scholar
  47. Pratt T, Conway CD, Tian NM, Price DJ, Mason JO (2006) Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J Neurosci 26:6911–6923PubMedCrossRefGoogle Scholar
  48. Pye DA, Vives RR, Turnbull JE, Hyde P, Gallagher JT (1998) Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem 273:22936–22942PubMedCrossRefGoogle Scholar
  49. Qu X, Carbe C, Tao C, Powers A, Lawrence R, van Kuppevelt TH, Cardoso WV, Grobe K, Esko JD, Zhang X (2011) Lacrimal gland development and Fgf10-Fgfr2b signaling are controlled by 2-O- and 6-O-sulfated heparan sulfate. J Biol Chem 286:14435–14444PubMedCrossRefGoogle Scholar
  50. Qu X, Pan Y, Carbe C, Powers A, Grobe K, Zhang X (2012) Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development. Development 139:2730–2739PubMedCrossRefGoogle Scholar
  51. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708PubMedCrossRefGoogle Scholar
  52. Rong J, Habuchi H, Kimata K, Lindahl U, Kusche-Gullberg M (2001) Substrate specificity of the heparan sulfate hexuronic acid 2-O-sulfotransferase. Biochemistry 40:5548–5555PubMedCrossRefGoogle Scholar
  53. Scholefield Z, Yates EA, Wayne G, Amour A, McDowell W, Turnbull JE (2003) Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s beta-secretase. J Cell Biol 163:97–107PubMedCrossRefGoogle Scholar
  54. Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16:206–212PubMedCrossRefGoogle Scholar
  55. Shively JE, Conrad HE (1976) Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15:3932–3942PubMedCrossRefGoogle Scholar
  56. Smeds E, Feta A, Kusche-Gullberg M (2010) Target selection of heparan sulfate hexuronic acid 2-O-sulfotransferase. Glycobiology 20:1274–1282PubMedCrossRefGoogle Scholar
  57. Stanford KI, Wang L, Castagnola J, Song D, Bishop JR, Brown JR, Lawrence R, Bai X, Habuchi H, Tanaka M, Cardoso WV, Kimata K, Esko JD (2010) Heparan sulfate 2-O-sulfotransferase is required for triglyceride-rich lipoprotein clearance. J Biol Chem 285:286–294PubMedCrossRefGoogle Scholar
  58. Stevens RL, Adachi R (2007) Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev 217:155–167PubMedCrossRefGoogle Scholar
  59. Turnbull JE, Fernig DG, Ke Y, Wilkinson MC, Gallagher JT (1992) Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem 267:10337–10341PubMedGoogle Scholar
  60. Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910PubMedCrossRefGoogle Scholar
  61. Wlad H, Maccarana M, Eriksson I, Kjellén L, Lindahl U (1994) Biosynthesis of heparin. Different molecular forms of O-sulfotransferases. J Biol Chem 269:24538–24541PubMedGoogle Scholar
  62. Yabushita H, Noguchi Y, Habuchi H, Ashikari S, Nakabe K, Fujita M, Noguchi M, Esko JD, Kimata K (2002) Effects of chemically modified heparin on Chlamydia trachomatis serovar L2 infection of eukaryotic cells in culture. Glycobiology 12:345–351PubMedCrossRefGoogle Scholar
  63. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Aichi Medical UniversityNagakuteJapan

Personalised recommendations